

FIVE-YEAR REVIEW REPORT

Second Five-Year Review Report for the Barkhamsted-New Hartford Landfill Barkhamsted-New Hartford, Connecticut

September 2008

Prepared By:

United States Environmental Protection Agency Region 1

Boston, Massachusetts

Approved by:

Janes T. Owens, III

rector, Office of Site Remediation and Restoration

TABLE OF CONTENTS

TAI	BLE OF CONTENTS	2
LIS	T OF ACRONYMS AND ABBREVIATIONS	6
EXI	ECUTIVE SUMMARY	7
FIV	E-YEAR REVIEW SUMMARY FORM	8
FIV	E-YEAR REVIEW SUMMARY FORM, CONT'D	9
1.0	INTRODUCTION	11
2.0	SITE CHRONOLOGY	12
3.0	BACKGROUND	14
	3.1 Physical Characteristics	14
	3.2 Land and Resource Use	14
	3.3 History of Contamination	15
	3.4 Initial Response Actions	16
	3.5 Summary of Basis for Taking Action	17
4.0	REMEDIAL ACTIONS	18
	4.1 Remedy Selection and Remedial Action Objectives	18
	4.1.1 Source Control	19
	4.1.2 Management of Migration	19
	4.2 Remedy Implementation	20
	4.3 System Operations/Operation and Maintenance (O&M)	21
	4.3.1 Operation and Maintenance (O&M) Issues	22
5.0	PROGRESS SINCE THE LAST FIVE-YEAR REVIEW	22
	5.1 Protectiveness Statement from Last Review	23
	5.2 Status of Recommendations and Follow-up Actions from Last Review	23
	5.3 Results of Implemented Actions, Including Whether They Achieved the Intended Purpose	24

	5.4 Status of Any Other Prior Issues24	4
6.0	FIVE-YEAR REVIEW PROCESS	5
	6.1 Administrative Components and Community Involvement	5
	6.2 Document Review	5
	6.3 Data Review	5
	6.4 Site Inspections	8
	6.5 Interviews	8
7.0	TECHNICAL ASSESSMENT	9
	7.1 Question A: Is the Remedy functioning as intended by the decision documents? 29	9
	7.2 Question B: Are the exposure assumptions, toxicity data, cleanup levels and remedial action objectives (RAOs) used at the time of remedy selection still valid?29	
	7.2.1 Changes in Exposure Pathways	9
	7.2.2 Changes in Toxicity, ARARs, and Other Contaminant Characteristics	1
	7.2.3 Expected Progress Towards Meeting RAOs	1
	7.3 Questions C: Other information that could call into question the protectiveness of the remedy?	4
	7.4 Technical Assessment Summary	4
0.0	ISSUES	1
8.0	155UE5	+
9.0	RECOMMENDATIONS AND FOLLOW-UP ACTIONS	4
10.0	PROTECTIVENESS STATEMENT	5
11.0	NEXT REVIEW3:	5
REI	TERENCES	6
FIG	URES	
]	Site Location Map	
2	Site Plan and Sampling Locations	
3	Overburden Groundwater Contour Map - April 30, 2003	
4	Shallow Bedrock Groundwater Contour Map – April 30, 2003	

- 5 Overburden Total VOCs and SVOCs Concentration Map April 30 May 8, 2003
- 5A Overburden Total VOCs and SVOCs Concentration Map April 2008
- 6 Overburden Total BTEX Concentration Map April 30 May 8, 2003
- 6A Overburden Total BTEX Concentration Map April 2008
- 7 Shallow Bedrock Total VOCs and SVOCs Concentration Map April 30 May 8, 2003
- 7A Shallow Bedrock Total VOCs and SVOCs Concentration Map April 2008
- 8 Shallow Bedrock Total BTEX Concentration Map April 30 May 8, 2003
- 8A Shallow Bedrock Total BTEX Concentration Map April 2008
- 9 Simulated and Observed Concentrations of 4 Methylphenol MW-101S
- 10 Simulated and Observed Concentrations of 2-Butanone MW-101S
- 11 Simulated and Observed Concentrations of 4 Methylphenol MW-5S
- 12 Simulated and Observed Concentrations of 2-Butanone MW-5S
- 13 Plume Centerline Concentrations for COCs and MNA Parameters 2003
- 14 Plume Centerline Concentrations for COCs and MNA Parameters 2008

TABLES

(Tables are located at end of document unless otherwise noted.)

- 1 Chronology of Site Events (page 11)
- 2 Contaminants of Concern and Other Target Analytes
- 3 Annual Operations/O&M Costs (page 21)
- 4 Summary of Historical Groundwater VOC and SVOC Results
- 5 Summary of Historical Groundwater Metals Results
- 6 Summary of Historical Surface Water Metals Results
- 7 Summary of Historical Sediment Metals Results
- 8 Summary of Analytical Results 2003 to 2008 VOCs and SVOCs in Groundwater
- 9 Summary of Analytical Results 2003 to 2008 Metals in Groundwater
- 10 Changes in Cancer Toxicity Data
- 11 Changes in non-Cancer Toxicity Data
- 12 Recommended Changes to Sampling Locations, Rationale and Frequency

APPENDICIES

- A. Landfill Inspection Checklist
- B. Applicable or Relevant and Appropriate Requirements
- C. Potentially Complete Exposure Pathways
- D. Vapor Intrusion Pathway Summary Page
- E. Graphs of Groundwater Concentration Trends for Select VOCs, SVOCs and Arsenic

LIST OF ACRONYMS AND ABBREVIATIONS

ARARs Applicable or Relevant and Appropriate Requirements

bgs Below ground surface

CERCLA Comprehensive Environmental Response, Compensation and Liability

Act

CFR Code of Federal Regulations
COCs Contaminants of Concern

COPC Contaminants of Potential Concern

CTDEP Connecticut Department of Environmental Protection EPA United States Environmental Protection Agency

ELUR Environmental Land Use Restriction

FS Feasibility Study FSP Field Sampling Plan

MCLs Maximum Contaminant Levels
MCLG Maximum Contaminant Level Goals

MDL Method Detection Limit

MNA Monitored Natural Attenuation

NPL National Priorities List

NTCRA Non-Time Critical Removal Action
OHM Oil and/or Hazardous Material
OMM Operations and Maintenance Manual

OU Operable Unit ppm Parts per million ppb Parts per billion

POTW Publicly Owned Treatment Works
PRP Potentially Responsible Party
PQL Practical Quantitation Limit
PSD Performing Settling Defendant
QAPP Quality Assurance Project Plan

RA Remedial Action

RAO Response Action Objectives

RAP Remedial Action Plan

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation ROD Record of Decision RPM Remedial Project Manager

RRDD Regional Refuse Disposal District No.1 SVOCs Semivolatile organic compounds VOCs Volatile Organic Compounds

EXECUTIVE SUMMARY

The remedy selected to address contamination at the Barkhamsted-New Hartford Landfill site (hereinafter referred to as the Site), located in the town of Barkhamsted, Litchfield County, Connecticut was Monitored Natural Attenuation (MNA) of Site groundwater (deemed as the only medium requiring further remediation). This landfill was capped as part of a Non-Time Critical Removal Action (NTCRA) lead by the Connecticut Department of Environmental Protection (CTDEP) to address source materials and principal-threat wastes. The CTDEP approved the landfill closure in January 1998. The trigger for this Five-Year Review was the last Five-Year Review in September 2003. This statutory review is required since hazardous waste remains at the Site above levels that allow for unlimited use and unrestricted exposure.

The Record of Decision (ROD) indicating that MNA was the selected remedy was approved on September 28, 2001 (EPA, 2001b). Initially, the ROD required quarterly sampling of groundwater monitoring wells for two years. This was conducted at the site to coincide with the monitoring requirements set forth in Landfill Operation and Maintenance Manual (O'Brien and Gere, October 2001). Since 2005, semi-annual sampling of groundwater monitoring wells have been conducted.

The assessment of the five-year review found that the remedy is functioning as designed. The immediate threats have been addressed, and the groundwater remedy is expected to be protective of human health and the environment upon completion, when groundwater cleanup goals are achieved through MNA, which was estimated in the Feasibility Study (FS) to occur in about 16 years (O'Brien & Gere Engineers, Inc., 2001a). The MNA remedy also appears ahead of the model prediction, so the remedial goal may be achieved sooner. In the interim, exposure pathways that could result in unacceptable risks are being controlled.

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFI	CATION				
Site Name: Barkl	namsted-New	Hartford Land	lfill		
EPA CERCLIS	D : CTD980	732333			
Region 1	Region 1 State: CT			City/C	County: Barkhamsted, CT
SITE STATUS					
NPL Status:	X Final	Deleted	/ - / ·		(Specify)
Remediation Sta	tus (choose a	II that apply):	Under Con	struction	X Operating Complete
Multiple OUs?	Yes				ruction Complete Date: 9/28/2001
Has site been put	into reuse?	Yes	X No		
REVIEW STAT	US				
Lead Agency:	X EPA	State	Tribe	Other Fe	deral Agency
Authors Names:	Byron Mah				
Review Period: Date(s) of Site In			, 8/6/08		
Type of Review:		-			
X Post-SARA		Pre-S.			NPL-Removal Only
Non-NPL Re Site	medial Action	n NPLS	State/Tribe	Lead	Regional Discretion
Review Number:	l (first)	X 2 (secon	d) 3 ((third)	Other (specify)
Triggering Action X Actual RA (NTCRA) Construction	Onsite Const	ruction at OU	# 1		ious Five-Year Review Report
Triggering Actio				22/03	
Due Date (five ye	ears after tri	ggering action	date): 9/	23/08	

FIVE-YEAR REVIEW SUMMARY FORM, CONT'D.

Issues:

There were no issues that affect the protectiveness of the remedy. As a side note, however, during the annual inspection of the landfill by the EPA in the summer of 2005 erosion was discovered at one of the surface water drainage downchutes. The downchute is located on the west side of the landfill. Erosion had occurred at a point starting approximately 180 feet from the bottom edge of the landfill just below a side slope diversion ditch. The erosion had resulted in the partial sinking of the gabions that lined the downchute and the accumulation of erosion material at the base of the landfill. The downchute was repaired. This event did not impact the cap liner.

Recommendations and Follow-up Actions:

There were no issues affecting the protectiveness of the remedy requiring follow-up actions. Regarding the previous surface erosion, a recommendation was made to repair the downchute before winter. The downchute was repaired in the fall of 2005 and appears to be functioning appropriately.

Continue to review all downchutes for erosion during annual inspections. Increase frequency of inspections if downchutes appear suspect for erosion.

Protectiveness Statement(s):

As a result of previous actions at the Site, groundwater is the only medium requiring further remedial action for which Monitored Natural Attenuation (MNA) was the selected remedy. The assessment of the five-year review found that the remedy is functioning as designed. The immediate threats have been addressed, and the groundwater remedy is expected to be protective of human health and the environment upon completion, when groundwater cleanup goals are achieved through MNA, which was estimated in the Feasibility Study (FS) to occur in about 16 years (O'Brien & Gere Engineers, Inc., 2001a). The MNA remedy also appears ahead of the model prediction, so the remedial goal may be achieved sooner. In the interim, exposure pathways that could result in unacceptable risks are being controlled.

Long-Term Protectiveness:

Long-term protectiveness of the remedial action will be verified by continuing the MNA groundwater sampling program to monitor and evaluate the contaminant plume downgradient of the landfill and the potential migration of the plume. Current data indicate that the plume appears stable or a steady state condition and is shrinking in size towards the landfill (source area). Since the Remedial Action at all OUs are protective, the Site is protective of human health and the environment.

Other Comments:

There are no other comments for this 5-Year Review.

1.0 INTRODUCTION

The purpose of this five-year review is to determine whether the remedy for the Barkhamsted-New Hartford Landfill Superfund Site (Site) is protective of human health and the environment. The methods, findings and conclusions of this review are documented in this five-year review report. In addition, this report identifies issues encountered during preparation of this five-year review, along with recommendations to address such issues.

The United States Environmental Protection Agency (EPA) must implement five-year reviews pursuant to Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (Section 121) and the NCP. CERCLA Section 121(c) states:

If the President selects a remedial action that results in any hazardous substances, pollutants or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section 9604 [104] or 9606 [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews.

The Agency reported this requirement further in the NCP; part 300.430(f)(4)(ii) of the Code of Federal Regulations (CFR) states:

If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after the initiation of the selected remedial action.

This is the second five-year review for the Site. The triggering action for this review is the last Five-Year review in September 2003 following the Connecticut Department of Environmental Protection (CTDEP) approval of the non-time critical removal date (NTCRA) in 1998, which included capping of the landfill, along with implementation of a leachate management system and institutional controls. The Five-Year Review is required due to the fact that hazardous substances, pollutants, or contaminants remaining at the Site above levels that allow for unlimited use and unrestricted exposure. This Five-Year Review has been prepared following guidance provided by EPA (2001a).

The selected remedial action to reduce impact of designated Contaminants of Concern (COCs) to groundwater (deemed as the only medium requiring remediation) is Monitored Natural Attenuation (MNA) of Site groundwater. LFR Inc. (LFR) was selected as the contractor on behalf of the Potentially Responsible Party (PRP) in February 2003. The Regional Refuse Disposal District No.1 (RRDD) acting as the Performing Party conducted the initial quarterly groundwater sampling event, pursuant to the ROD, in April and May 2003 program. In 2005 after 2 years of quarterly sampling the sampling frequency changed to semi-annual.

2.0 SITE CHRONOLOGY

The chronology of the Site is addressed in Table 1, which includes significant events and dates as one operating unit (OU).

TABLE 1: CHRONOLOGY OF SITE EVENTS

Date (Month/year)	Environmental Issue/Event/milestone			
September 1970	Regional Refuse Disposal District No. 1 (RRDD) was formed.			
September 1972	RRDD received CTDEP soil waste permit #005-2L. The RRDD purchased the Barkhamsted property from the Town of Barkhamsted.			
1970s Operation of chemical pit that received oily sludge with metal gri degreasers.				
January 1974	Modification to the RRDD solid waste permit was issued.			
April 1974	The landfill became operational.			
1974-1979	CTDEP solid waste reports document lack of daily cover material; additional issues include ponding of water on landfill surface and encroachment of brush and bulky waste onto 50-foot buffer zone.			
April 1974- August 1988 Barkhamsted landfill Site was used for the disposal of solid wast				
1980	CTDEP inspection of the Site.			
1981	EPA conducted a preliminary assessment for the Site.			
March 1981	CTDEP requests RRDD to remove hazardous waste from the facility.			
July 1981	CTDEP formerly approved disposal of metal grinding waste at Site.			
1983	Two complaints received concerning the presence of a large number of drums; CTDEP requests that 25 drums containing suspect motor oil be re-located to a paved area on-Site.			
November 1983	Thirty drums discovered near the scrap metal area (north of toe of landfill and NW of garage).			
December 16, 1983	A modification to the landfill operating permit was issued.			
1984	Requirement for a new metals grindings cell. Metal grindings were stored on Site in 55-gallon drums.			

Cantonskan 1006	CTDED columnia december discontinuo di conditata de manualina				
September 1986 CTDEP acknowledges handling of waste oil and batteries for recycling.					
March-1987	NUS Corporation conducts site inspection, on behalf of EPA –Site receives				
	hazard ranking score (HRS) of 52.00, later lowered to 38.05, due to low				
	population density and fact that area served by public water supply.				
November –	Disposal of solid waste at the Site because CRRA mid-Connecticut Waste to				
December 1988	Energy Plant was inoperable.				
August 1988 –	Disposal of bulky and non-processible waste only.				
October 1993					
1988	CTDEP document states that one half of the barrels received at the Site				
	contained unspecified amounts of chlorinated hydrocarbons or methyl ethyl				
0 1 5 1000	ketone.				
October 5, 1989	Barkhamsted Site listed on NPL.				
February 1990	Minor amendment was granted to the RRDD solid waste permit allowing				
	landfill to accept dewatered sludge from Winsted's publicly owned treatment				
1000	works (POTW).				
1990	CTDEP Administrative order to investigate waste materials; determine extent of				
0 . 1 4 1001	impact and potential impact to soil, surface water and groundwater				
October 4, 1991	CERCLA Administrative Order to Conduct Remedial Investigation/Feasibility				
	Study (RI/FS) (Docket No. I-91-1128).				
Dec 1991-Jan	Limited Field Investigation (LFI) conducted by O'Brien & Gere Engineers, Inc.				
1992	Elimited Field investigation (Elif) conducted by 6 Elifements, inc.				
December 1991	Scope of Study completed by Fuss & O'Neill per CTDEP Administrative Order				
2000	No. 666.				
November 1992	Landfill closure implemented. CTDEP revise permit # SW-0005-2L to address				
	water quality monitoring plan.				
October 1993	Facility ceases acceptance of waste for on-Site disposal.				
April 1994	Engineering Evaluation/Cost Analysis (EE/CA) addressing NTCRA.				
September 26,	EPA approves NTCRA; EPA and CTDEP enter into Consent Order requiring				
1994	RRDD to design and implement NTCRA.				
October 1994	Landfill cover (2-ft thick) installed.				
January 1995	CTDEP approves landfill closure.				
February 1996	Remedial Investigation (RI) by O'Brien & Gere Engineers, Inc. (1996).				
September 1996	Draft Remedial Action Plan (RAP).				
1998	NTCRA completed; implementation of leachate collection system; capping of				
	landfill and Site restoration.				
June 2001	Feasibility Study Report, O'Brien & Gere Engineers, Inc. (2001a).				
September 28,	EPA Record of Decision (ROD) (EPA, 2001b).				
2001	and the state of t				
November 19,	Environmental Land Use Restriction (ELUR) public notice; 30-day comment				
2002	period from 11/19/02 to 12/19/02.				
April to June	Sampling of Site groundwater monitoring wells, residential potable water wells,				
2003	surface water and sediment sampling per the ROD begins.				
July 2003	Drilling to install additional monitoring wells MW-120S and MW-120B.				

The on-Site ELUR, dated July 24, 2003, was recorded at the Barkhamsted Land			
Records in Volume 124, Page 140.			
First 5-Year Review.			
The off-Site Town Garage ELUR, dated December 22, 2003, was recorded in			
Volume 126, Page 347. The off-Site MDC ELUR, dated December			
22, 2003, was recorded in Volume 126, Page 357.			
The off-Site ELUR for the Morris property dated January 4, 2004 was recorded			
at the Barkhamsted Land Record in Volume 126, Page 689.			
EPA Site inspection discovers a downchute failure in one of the downchuts.			
Downchute repair conducted and completed.			
Public notice that a Five-Year Review is to be conducted.			
Second Five-Year Review			

3.0 BACKGROUND

3.1 Physical Characteristics

The Site is comprised of a 97.8-acre parcel of land located on the northern slope of a hill within the Farmington River Valley, located in the north central portion of Connecticut. The Site is primarily used as a transfer station and recycling center consisting of 97.84 acres located in the Towns of Barkhamsted and New Hartford, Litchfield County, Connecticut (a Site Location Map is provide as Figure 1). The capped landfill itself is approximately 13 acres. The Site is abutted to northeast by the Barkhamsted Town Garage facility and in other directions by both developed and undeveloped private properties. This includes residential properties to the east and southeast that use private wells for potable water. The town center of New Hartford lies within a one-mile radius to the south-southeast of the Site. Other areas of the Site property include an active transfer station, recycling area, maintenance and office building, and dense woods comprised primarily of hardwood and conifer trees. A Site Location Map is provided as Figure 1 and Figure 2 presents the Site Plan and Sampling Locations.

3.2 Land and Resource Use

The Site was formerly used as a solid waste landfill that received oily sludge with metal grindings and degreasers. Waste oil and batteries were handled for recycling. A NTCRA was initiated in 1992 to cap the landfill, which stopped accepting waste for on-Site disposal in October 1993. In January 1998, the CTDEP approved the landfill closure.

The current use of the Site includes an active waste transfer station, recycling area, with a maintenance and office building. The capped landfill is fenced. The current use for the surrounding area is residential, commercial and recreational. The Metropolitan District

Commission (MDC) owns undeveloped land along the Farmington River, which is used for recreational purposes, including fishing, swimming and boating.

One surface water body, designated as the "Un-named Brook", originates south of the Site and flows along the western portion of the landfill area. Beyond the landfill, the brook proceeds to the northeast and flows under Route 44, where it enters the Farmington River floodplain and a series of small beaver ponds. The brook eventually flows into the Farmington River, located approximately 0.25 miles southeast of the Site. The Farmington River is a Class B River for recreational fishing and boating.

The groundwater aquifer underlying the Site is currently not used as a drinking water source, but nearby commercial and residential areas use off-Site wells for potable water. These off-Site potable wells are not within the zone of Site-related groundwater plumes. Groundwater at the Site is estimated to flow to the northeast. Downgradient of the Site, groundwater flow is more easterly toward the Farmington River. Groundwater contour maps for April 2008 for the overburden and shallow bedrock are included as Figures 3 and 4, respectively. Due to the affected groundwater at the Site an Environmental Land Use Restriction (ELUR) was placed on the Site to document the groundwater contamination, which was recorded at the Barkhamsted Land Record on February 24, 2004. In addition, the ELUR noted that groundwater is not to be used for drinking or other purposes, that there is to be no building on the cap or residential use immediately downgradient, that there is no disturbance to the cap and it is to be properly maintained to prevent exposure.

3.3 History of Contamination

The Barkhamsted landfill was used for the disposal of solid waste between April 1974 and August 1988. The property is owned and operated by the Regional Refuse Disposal District No. 1 (RRDD). RRDD is a corporate entity that was established on May 25, 1970 upon the adoption of its charter by the Towns of Barkhamsted, Colebrook, New Hartford and Winchester. On September 21, 1972, RRDD received a permit from the State of CTDEP approving the establishment of a solid waste disposal area. The Site began operating as a landfill in 1974.

The Site was used for the disposal of solid waste between April 1974 and August 1988. After August 1988, the landfill was used only for the disposal of bulky and non-processible waste with the exception of a period during November and December 1988 when the Connecticut Resources Recovery Authority (CRRA) Mid-Connecticut Waste to Energy Plant was inoperable. In 1998 a landfill cap and leachate collection system, surrounded by a fence, were constructed pursuant to a NTCRA under CERCLA authority. Table 1 provides a chronology of major environmental issues, events and milestones at the Site, as documented in the Remedial Investigation (RI) report (O'Brien & Gere Engineers, Inc., 1996) and Feasibility Study (FS) report (O'Brien & Gere Engineers, Inc., 2001a).

Historical wastes accepted at the landfill included the following:

- Municipal solid waste;
- Industrial wastes, including metal grinding waste, oily sludge with metal grinding and degreasers; barrels containing unspecified amounts of chlorinated hydrocarbons and methyl-ethyl-ketone (MEK) and keratin; and
- Dry metal grinding waste.

3.4 Initial Response Actions

In 1981, EPA conducted a Site inspection, based on previous findings of the CTDEP. EPA's 1981 inspection included collection and analysis of Site groundwater samples. Laboratory analytical results of Site groundwater indicated concentrations of xylenes, toluene, 1,1-dichloroethane (1,1-DCA), 4-methyl-2-pentatnone and vinyl chloride (VC). EPA inspection report also indicated the presence of metals at the Site (including cadmium, chromium, copper, lead, manganese, nickel and zinc) attributed to the historical disposal of oily metal grinding sludges. Additionally, during U.S. EPA's inspection, leachate was observed to be discharging from the landfill into the Un-named Brook. Pursuant to Section 105(8)(b) of CERCLA, the Site was proposed for inclusion on the National Priorities List (NPL) on June 21, 1988 and was subsequently listed on the NPL on October 5, 1989. Administrative orders were issued by CTDEP (1990) and EPA (1991) to investigate waste materials and disposal activities on the Site, along with the extent of impact to soil, groundwater and surface water.

In 1994, a NTCRA was implemented at the Site, which included re-location of impacted soil and sediment to a paved portion of the Site, along with installation of a leachate collection system and landfill cap. The NTCRA was completed in 1998. A risk assessment was prepared prior to NTCRA implementation to assess post-NTCRA risks to human and ecological receptors. Groundwater was deemed as the only medium requiring remediation.

Subsurface investigations conducted from 1992 to 2000 are documented in the RI and FS reports. These investigations indicated the following:

- Soil sampling analytical results indicated concentrations of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides and polychlorinated biphenyls (PCBs). Table 1-1 of the FS Report (O'Brien & Gere Engineers, Inc., 2001a) identifies contaminants of potential concern (COPCs), including VOCs, SVOCs and inorganics. Soils containing constituents detected at concentrations exceeding applicable or relevant and appropriate criteria were addressed in the NTCRA.
- Surface water sampling and leachate seep sediment sampling results indicated concentrations of SVOCs, pesticides and PCBs. Sediments samples collected from hydrogeologically downgradient locations (to the landfill) and leachate seep sediment samples indicated concentrations of VOCs, SVOCs, metals, pesticides and PCBs.

Prior to the RI, 31 groundwater monitoring wells were installed at the Site. Twenty-two additional wells were installed during the RI. COCs based on groundwater investigations include 14 VOCs, 4 SVOCs and 4 inorganics. Groundwater sampling conducted since the RI have shown a decreasing trend in most contaminant concentrations.

3.5 Summary of Basis for Taking Action

Hazardous substances in concentrations above health based levels were identified during the RI/FS. The RI identified COCs that have been released at the Site in each media, which are identified below and also in Table 2. EPA completed a baseline human health risk assessment in February 1996 and updated in April 2000. Using EPA's risk assessment guidance, potential human health effects associated with exposure to COCs were estimated for various exposure scenarios. Calculated risks for some exposure scenarios fell outside EPA's acceptable range, which formed the basis for the response actions. An ecological risk assessment conducted within the same time period determined that it was not likely that the contaminants found at the Site would cause significant ecological impacts.

The COCs were selected from the constituents detected in groundwater based on the unacceptable risks that these contaminants present. Groundwater was the only medium that poses an unacceptable post-NCTRA risk to human health. Since COCs have migrated in overburden and bedrock groundwater, off-Site impacts are a concern, specifically to nearby potable water supplies. As documented in U.S. EPA's Record of Decision (ROD) (EPA, 2001b), the primary objective is restoration of Site groundwater by MNA, which has been designated as the final Site environmental remedy with an expected duration of approximately 16 years. Installation of additional groundwater monitoring wells occurred in July 2003 to fill in data gaps and assess the performance of the MNA.

The only medium that potentially poses an unacceptable post-NTCRA risk to the environment is sediment. Although the actual risk is uncertain, it is likely that decreased leachate, biodegradation of organic contaminants, and natural sedimentation will ameliorate these possible risks. Surface water and sediment sampling is to be conducted to assess this possible risk. Based on surface water sampling conducted in 2000 (subsequent to the NTCRA), there are no known constituents exceeding applicable criteria in surface water, as identified in the ecological risk assessment presented in the FS. Leachate seeps are expected to gradually diminish in discharge volume over time or dry up.

COCs for groundwater, as addressed in the ROD, include the following:

Acetone Benzene Manganese Toluene

1,2-dichloroethane

2-Butanone (MEK)

1,2-dichloropropane Chloroethane 4-methyl-2-pentanone 1,4-dichlorobenzene

Second Five-Year Review Report for the Barkhamsted-New Hartford Landfill September 2008 Page 18 of 36

Chloroform Bis(2-ethyl hexyl) phthalate

Chloromethane 2,4-dimethylphenol Dibromochloromethane 4-methylphenol

Methylene chloride Arsenic

Trichloroethene (TCE) Chromium (total)

Vinyl chloride (VC) Lead

A complete list of the COC and other compounds analyzed is included in Table 2.

4.0 REMEDIAL ACTIONS

The following sections discuss the initial plans, implementation history and current status of the remedy.

4.1 Remedy Selection and Remedial Action Objectives

The ROD for the Site was signed on September 28, 2001 (EPA, 2001b). Monitored Natural Attenuation (MNA) was selected as the remedial option to reduce groundwater impacts at the Site. The remedy at this Site is designed to protect human health and the environment by eliminating, reducing or controlling exposures to human and environmental receptors through monitored natural reductions in toxicity, engineering controls and institutional controls. More specifically, groundwater cleanup levels will be achieved through natural attenuation processes. Environmental land use restrictions would prohibit residential use of the Site, use of groundwater for drinking or any other purpose, and avoid disturbance of the landfill cap installed under the NTCRA. Environmental land use restrictions of down-gradient properties would prohibit the installation of any wells and use of groundwater for any purpose.

The primary goal of the selected remedy is to ensure that the area down-gradient of the landfill will no longer present an unacceptable risk to humans via groundwater and will be suitable for unrestricted use. Approximately 16 years are estimated as the amount of time necessary to achieve the goals consistent with residential use. The expected outcome of the site itself is to remain as a refuse / recycling / disposal facility, with restricted use of land and groundwater at the landfill itself, unrestricted use in all other areas.

Remedial action objectives (RAOs) were developed to aid in the development and screening of alternatives. These RAOs were developed to mitigate and prevent existing and future potential threats to human health and the environment. The following RAOs identified in the ROD were developed because of data collected during the RI and the alternatives evaluated in the FS (O'Brien & Gere Engineers, Inc., 2001a). These RAOs for the selected remedy for the Site are further broken into two categories: groundwater and sediment.

Groundwater

The RAOs for groundwater for human health are as follows:

- Prevent ingestion or dermal contact with groundwater having constituent concentrations exceeding EPA Safe Drinking Water Act non-zero MCLGs or Maximum Contaminant Levels (MCLs), or in their absence, the more stringent of an excess cancer risk of 1 x 10⁻⁶ for each substance or a hazard quotient of 1 for each non-carcinogenic substance. (Please note that this RAO applies to all areas where the groundwater has been impacted by contamination from the landfill including areas beneath the landfill. For information on MCLGs please refer to NCP Section 300.403(e)(2)(i)B and Section 300.403(e)(2)(i)
- Restore groundwater beyond the compliance boundary (limits of the landfill –See
 Figure 2) to MCLs or any more stringent CT Remediation Standards (background
 concentrations), or in their absence, the more stringent of an excess cancer risk of 1 x
 10⁻⁶ for each substance or a hazard quotient of 1 for each non-carcinogenic substance.

Sediment

The RAOs for sediment for environmental protection are as follows:

- Protect benthic invertebrates and mammals from ingesting contaminated prey from direct contact with, or ingestion of, sediment having constituent concentrations exceeding a hazard index of 1.
- Prevent releases of constituents from sediments that would result in surface water levels exceeding federal Ambient Water Quality Criteria, Connecticut Water Quality Standards, or in their absence, a hazard index of 1.

4.1.1 Source Control

The source control was addressed by the NTCRA, which included re-location of impacted soil and sediment to a paved portion of the Site, along with installation of a leachate collection system and landfill cap. During the performance of the NTCRA, an approximate 340-foot reach of the Un-named Brook was relocated on the west side of the landfill, with the former section of the brook being covered with soil. Moreover, sediments were excavated from an approximately 70-foot reach of the brook and placed beneath the cap during the NTCRA construction. The EPA has determined that there are no present contaminant sources at the Site and no additional actions are anticipated during implementation of the final cleanup remedy.

4.1.2 Management of Migration

The major components of the management of migration remedy selected in the ROD includes:

- Long-term monitoring of groundwater, surface water (including seeps), and sediment;
- Restoration of contaminated groundwater via natural attenuation;
- Environmental land use restrictions (ELURs);
- Public education program; and
- · Five-year reviews.

4.2 Remedy Implementation

In 1992 landfill closure was implemented in accordance with the Landfill Closure Plan (Fuss & O'Neill, 1992). In January 1995 the CTDEP approves the landfill closure. In April 1997, the Remedial Action Plan for the NCTRA was prepared, which included (O'Brien & Gere Engineers, Inc., 1997):

- Relocation of impacted soil, sediment and refuse to within the limits of the area to be capped;
- Installation of a leachate collection system with a 15,000-gallon underground leachate holding tank;
- Capping of the landfill with a low-permeability capping system;
- Relocation of an the Un-named Brook;
- Vertical extension of groundwater monitoring wells located within the limits of the capped area and abandonment of monitoring wells no longer being used;
- Site restoration;
- · Installation of perimeter security fencing; and
- Institutional controls for protection of the landfill cap using ELURs. The ELURs
 indicate the groundwater contamination, that groundwater is not to be used for
 drinking or other purposes, that there is to be no building on the cap or residential use
 immediately downgradient, that there is no disturbance to the cap and it is to be
 properly maintained to prevent exposure.

In January 1998 the NTCRA was completed. Since then, community involvement activities were conducted. In June 2001 the Feasibility Study (FS) was completed (O'Brien & Gere Engineers, Inc., 2001a). On September 28, 2001, the ROD was signed, which selected MNA as the remedy (EPA, 2001b). A Consent Decree was signed by the PRPs on various dates between September and November 2002 and by government

representatives between September 2002 and January 2003, which was entered by the court on May 7, (United States v. Regional Refuse District No. 1, et al., 2003).

Pursuant to the terms of the Consent Decree, RRDD is performing the RA. In spring of 2003 RRDD initiated the long-term monitoring of groundwater. Periodic monitoring data continues to be collected in support of restoration of contaminated groundwater via monitored natural attenuation.

MNA remedy provides for both source control and management of groundwater migration. The approximate clean up time frames for the selected remedy is 16 years to reach groundwater cleanup levels. Statutory 5-year reviews will be conducted as long as waste is in place.

4.3 System Operations/Operation and Maintenance (O&M)

RRDD is conducting the long-term monitoring and maintenance activities at the Site. There are two components to the long-term monitoring and maintenance activities, one for the CTDEP and the MNA activities for the EPA. For the CTDEP, a landfill post-closure Operation and Maintenance Manual (OMM) was completed in October 2001 (O'Brien & Gere Engineers, Inc., 2001b). O&M activities include the following:

- Routine inspection and maintenance of constructed features, including the landfill
 cap, gas venting system, leachate collection and storage system, surface water runoff
 facilities, the in-stream sedimentation basin, access roads, groundwater monitoring
 system and physical Site security;
- Mowing of the cap;
- Performance of a Long-term monitoring program including groundwater, surface water (including seeps) and sediment;
- Response to alarm and unforeseen circumstances;
- Coordination of leachate removal and disposal; and
- Evaluation of O&M and monitoring activities and identification of proposed changes to the O&M Manual or Site procedures/policies that would provide a safer and/or more cost-effective operation.

Visual Site monitoring of the landfill occurs on a routine basis to evaluate evidence of erosion; cap differential settlement; the condition of the perimeter fencing, gates, locks and signs; condition of gas monitoring probes; drainage structures and surrounding property structures. The existing groundwater monitoring wells and immediate surrounding area is reviewed during each sampling event.

To date, the CTDEP O&M activities have been ongoing since the capping of the landfill. The MNA sampling activities were initiated in April 2003 with the first quarterly sampling event.

With regard to O&M costs, the following is the total annual system O&M costs for the groundwater, potable well, surface water and sediment sampling, analysis and reporting during the first 5-year period until January 2008. This does not include the mowing, leachate disposal, the downchute repair or other maintenance activities.

Total Cost Estimate rounded to nearest \$1,000 Dates To From 3/03 1/04 \$393,000 1/04 1/05 \$228,000 1/05 1/06 \$139,000 1/07 1/06 \$113,000 1/07 1/08 \$105,000

Table 3: Annual System Sampling & Analysis O&M Estimated Costs

4.3.1 Operation and Maintenance (O&M) Issues

This section summarizes issues that were not normal O&M activities. During monitoring well sampling, some wells could not be sampled typically due to well head damage from snow plows or obstructions in the well such as a pump and tubing stuck in the well. Typically these repairs were made or obstructions removed prior to the next sampling event. However, some well obstructions could not be removed.

Due to the cleanup goals being set in the ROD at low background concentrations the analytical laboratory sometimes has a problem achieving these concentrations. As many COC concentrations are still above their background concentrations, this is not an immediate issue, but the required detection limits will need to be achieved particularly as the COC concentrations decrease. This will be addressed with the laboratory.

With regard to the landfill cap, the western downchute erosion identified in the summer of 2005 was repaired in the fall of 2005. There was a significant cost for the repair of the downchute, but it had no impact on the remedy. The cap liner was not affected, only the drainage structure and soil cover. Ongoing monitoring of the cap should identify cap issues prior to them potentially affecting the remedy.

5.0 PROGRESS SINCE THE LAST FIVE-YEAR REVIEW

This is the second Five-Year Review for the Site. A summary of the progress for this review period (2003 to 2008) is presented in the following subsections.

5.1 Protectiveness Statement from Last Review

The following is the Protectiveness Statement from the last review in 2003:

As a result of previous actions at the Site, groundwater is the only medium requiring further remedial action, for which Monitored Natural Attenuation (MNA) was the selected remedy. The assessment of the Five-Year review found that the remedy is functioning as designed. The immediate threats have been addressed and the remedy is expected to be protective of human health and the environment when groundwater cleanup goals are achieved through MNA, which was estimated in the Remedial Investigation and Feasibility Study (RI/FS) to occur in about 16 years. In the interim, exposure pathways that could result in unacceptable risks are being controlled.

5.2 Status of Recommendations and Follow-up Actions from Last Review

A summary of the 2003 recommendations and follow-up actions from the last review are summarized as follows.

Status of Issues and/or Recommendations and Follow-Up Actions from 2003

Issues	Recommendations and Follow-Up Actions	2008 Comment/Status		
Discovery of four 55-gallon drums suspected of containing purged groundwater by MW-111.	The drum's contents were tested, removed and the contents placed in the leachate holding tank for disposal.	Completed in 2003.		
Three groundwater monitoring wells (MW113-I, MW113- D and MW4-R were inaccessible.	Repair of damaged wells MW113- I and MW113-D do not appear necessary at this time. Their potential need will be evaluated based on new Site data.	The wells MW113-I and MW113-D are upgradient wells in an un-impacted area and are not required. Well MW-4R's obstruction was removed in April 2008 after several prior attempts. This well will continue to be used.		
Not an issue in 2003, but a recommendation.	Continued monitoring of Site groundwater, seeps, soil, surface water and sediment.	The MNA remedy will continue to monitor Site groundwater, seeps, surface water and sediment. There is currently no plan to monitor soil at the Site.		
Not an issue in 2003, but a recommendation.	Continue to verify that natural attenuation is occurring.	This is an ongoing task in the review of the data.		
Not an issue in 2003, but a recommendation.	Adoption of ELUR for properties other than the RRDD facility – on Site discussed first, see next item.	The on-Site ELUR, dated July 24, 2003, was recorded at the Barkhamsted Land Records in Volume 124, Page 140 on August 27, 2003.		
Not an issue in 2003,	Adoption of ELUR for	There are three off-Site ELURs. The Town		

but a recommendation.	properties other than the RRDD facility – off Site.	Garage ELUR, dated December 22, 2003, was recorded in Volume 126, Page 347 on January 22, 2004. The MDC ELUR, dated December 22, 2003, was recorded in Volume 126, Page 357 on January 22, 2004. The Morris property ELUR, dated January 4, 2004 was recorded at the Barkhamsted Land Record in Volume 126, Page 689 on February 24, 2004.
Not an issue in 2003, but a recommendation.	Continued maintenance of the landfill cap cover.	This is an ongoing activity conducted by the RRDD.
Not an issue in 2003, but a recommendation.	To more clearly define the extent of the COCs, it was recommended that additional wells be sampled in future sampling events. The additional wells proposed to be sampled include wells MW-105S and B, MW-108 S and B, MW-109B, MW-117S and B and MW-118S and B.	This comment was made at the start of the sampling program. A review of the data since then indicates that the plume is stable and is not moving significantly to the east. Therefore, these wells were not sampled. To better assess the MNA process between impacted and un-impacted areas a new well couplet was installed to the north of well MW-103 by the Barkhamsted DPW garage. Several soil borings were advanced in this area to determine the location of the wells. The new well couplet (MW-120S &120B) was installed in July 2003.

5.3 Results of Implemented Actions, Including Whether They Achieved the Intended Purpose

The results or status of the implemented actions are summarized in Section 5.2. The storm water downchute repair of 2005 is working, and these downchutes are checked during the RRDD and EPA Site inspections. Therefore, the actions to address the issues set forth in Section 5.2 have achieved or are achieving their intended purpose. For the remedy, the MNA sampling and analysis activities are being implemented and are achieving their goal of documenting the MNA remedy, which is proceeding as planned.

5.4 Status of Any Other Prior Issues

The issues from the 2003 Five-Year Review are summarized in Section 5.2. There were no other issues reported in the 2003 Five-Year Review.

6.0 FIVE-YEAR REVIEW PROCESS

6.1 Administrative Components and Community Involvement

On March 20, 2008 a meeting of the Five-Year Review team was led by Byron Mah of EPA, who is the Remedial Project Manager (RPM) for the Barkhamsted Site. The other meeting members included Michael Baer, Eric Nichols and Allen Walker of LFR, Inc. who are conducting the MNA remedy for the RRDD. The Five-Year Review process and schedule were discussed.

On April 19, 2008 a public notice was published in the Register Citizen to announce that the Five-Year Review was to be conducted. A copy of the notice was also provided to the CTDEP Site contact, Maurice Hamel.

As documented in the ROD and the last Five-Year Review, the level of community concern and involvement has varied, and since the completion of the NTCRA, community interest has been minimal. During the past 5 years, the RRDD and LFR have received no community inquiries other than the people involved with the sampling of the potable wells. These inquiries are associated with the sampling schedule and obtaining copies of the sampling results.

6.2 Document Review

Site-related documents reviewed as part of this effort. The documents were compared to six aspects of the Site including:

- Basis for the Response Action;
- Implementation of the Response;
- Operation and Maintenance;
- Remedy Performance;
- Legal Documentation; and
- Community Involvement.

6.3 Data Review

Groundwater, surface water, seep and stream sediment monitoring pursuant to the ROD was initiated in April and May of 2003. Groundwater, surface water and seep monitoring was initially conducted quarterly for 2 years and then semi-annually to present. Sediment sampling is conducted annually in the spring.

In general, most contaminants were detected at their highest levels early in the remedial history of the Site, prior to the NTCRA and landfill capping in 1998. These higher contaminant concentrations were followed by a drop in contaminant levels, which was likely the result of removal and capping activities at the Site as the source material was capped, limiting migration.

Since 2003, the contaminant concentrations have been decreasing or are in a steady state condition. The following tables summarize the historical sampling results:

- Table 4a Summary of Historical Groundwater VOC results;
- Table 5 Summary of Historical Groundwater metal results;
- Table 6 Summary of Historical Surface water metal results;
- Table 7 Summary of Historical sediment metal results;
- Table 8 Summary of Analytical Results 2003 to 2008 VOCs and SVOCs in Groundwater; and
- Table 9 Summary of Analytical Results 2003 to 2008 Metals in Groundwater.

Based on the analytical results, figures were prepared of the COC concentrations from the start of the MNA monitoring in the spring of 2003 and for the most recent sampling result from the spring of 2008. The following figures were prepared:

- Figure 5: Overburden Total VOCs and SVOCs Concentration Map April 30 May 8, 2003;
- Figure 5A: Overburden Total VOCs and SVOCs Concentration Map April 2008;
- Figure 6: Overburden Total BTEX Concentration Map April 30 May 8, 2003;
- Figure 6A: Overburden Total BTEX Concentration Map April 2008;
- Figure 7: Shallow Bedrock Total VOCs and SVOCs Concentration Map April 30 -May 8, 2003;
- Figure 7A: Shallow Bedrock Total VOCs and SVOCs Concentration Map April 2008;
- Figure 8: Shallow Bedrock Total BTEX Concentration Map April 30 May 8, 2003;
 and
- Figure 8A: Shallow Bedrock Total BTEX Concentration Map April 2008.

A review of these figures indicates that the plume concentrations and size has decreased with time from 2003 to 2008. The extent of the plume is reduced and it is located closer to the source area.

With regard to the surface water, seep and sediment sampling, the results of this sampling are consistent or lower than that of the post-NTCRA sampling. For post-NTCRA sampling, the ROD indicated an acceptable risk for surface water and seeps and ongoing monitoring for sediment due to an uncertain risk. The uncertain risk was an ecological risk for benthic invertebrates. The ROD also noted that barium and manganese were identified as the only compounds exceeding the probable effects concentration (PEC) benchmark. Since 2003, the start of the post-ROD sampling, higher concentrations of barium and manganese were detected in the upstream sample Sed-3 (located at SW-3). The concentrations of these compounds were lower in the downstream samples. Typically the middle sample (Sed-16) detected slightly higher barium and manganese concentrations than the downstream sample (Sed-9). As noted in Table 7 the PEC concentration for barium and manganese were exceeded in the upstream sample, the barium PEC was typically slightly exceeded in the mid-stream sample and there was one PEC exceedence for barium in 2007 in the downstream sample. The greater metal concentrations in the upstream sample may suggest a possible local condition with the metals occurring naturally in higher concentrations upstream. The upstream location is undeveloped with no obvious source for metals. The concentration change may also be associated with the relocation of the stream during the NTCRA.

An evaluation of the natural attenuation processes at the Site included evaluating four indicators that are recommended in the Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (OSWER Directive No. 9200.4-17P, April 21, 1999) for evaluating the performance of an MNA remedy. The four indicators are:

- Demonstrate that natural attenuation is occurring according to expectations;
- Detect changes in environmental conditions that may reduce the efficacy of the natural attenuation processes;
- Identify potentially toxic or mobile transformation products; and
- Verify that the plume is not expanding either downgradient, laterally, or vertically.

Since completion of the cap in 1998, the contaminants for which groundwater cleanup levels were established have decreased in concentration. Many contaminants are below the MCL and some are at or approaching the respective cleanup goal of background concentrations in recent sampling events. As set forth previously, Figures 5 to 8A present the total VOC, SVOC and BTEX concentrations in the spring of 2003 and the spring of 2008. These figures indicate the decreasing trend in contaminant levels and in the extent of the contamination in the groundwater. These figures indicate a reduction of the plume in downgradient directions, as well as vertically, and the plume is nearer to the original source area. The concentrations of toluene, benzene and trichloroethene, which are some of the more prevalent and higher concentration COC, are decreasing in

concentration. This decreasing trend can be seen in source area wells MW-1S and MW-101S to downgradient wells MW-4S, MW-5S, MW-5B, MW-102B, MW-120B and MW-111B. Based on a review of the MNA data, the data indicates that the groundwater attenuation process conceptualized in the ROD is proceeding essentially as expected.

The evaluation of the MNA parameters is further discussed in Section 7.2.3 of this report.

6.4 Site Inspections

On 6/19/08, 6/25/08, and 8/6/08 EPA conducted inspections at the site for the benefit of the 2nd 5 Year Review. The team consisted of Byron Mah, Jean Choi, and Rudy Brown.

As a result of the inspections, EPA has the following observations:

- 1. The overall LF surface conditions were very good.
- 2. The repaired downchute appeared very good. In 2005 a downchute was eroded due to a series of heavy rains that did not drain along the downchutes. A repair was made to the downchute.
- 3. However, one of the downchutes located in the mostly southern slope was full of vegetation on the downchute. The area was treated and part of the cap was mowed as a result of this finding. Upon re-inspection, EPA discovered some erosion that could lead to a potential downchute failure in the future. RRDD#1 has been notified of this and will address this maintenance as part of their on going O&M activities. Please also see inspection memorandum and inspection checklist in Appendix A.

Please note that the operator of the landfill also has regular cap inspections by an independent inspector as part of CTDEP requirements.

6.5 Interviews

Interviews were conducted with various parties connected to the Site. Donald Stein, Barkhamsted's first selectman was interviewed on September 2, 2008. No significant problems regarding the Site were identified during the interview. There were no concerns expressed about the protectiveness of the remedy or the operation of the facility.

Jim Hart, the administrator for the Site, (June 19, 2008) did not indicate significant problems regarding the Site. He presented a draft redevelopment master plan that considers the subdivision of lots on the RRDD property that are not contaminated with the waste on site. He indicated that they are considering the installation of wells up gradient and side gradient from the landfill in order to service these lots with potable water. EPA indicated that he would have to demonstrate that this use of water would not have an impact on the remedy.

7.0 TECHNICAL ASSESSMENT

7.1 Question A: Is the Remedy functioning as intended by the decision documents?

Yes, the review of documents, ARARs, risk assumptions, and the results of the Site inspection indicate that the remedy is functioning as intended by the ROD as an operating remedial action. A copy of the ARARs for the Site is attached at Appendix B. The capping of the landfill, and the collection of leachate have achieved the remedial objectives to minimize the migration of contaminants to groundwater and surface water and prevent direct contact with, or ingestion of, contaminants in soil and sediments. The effective implementation of institutional controls has prevented exposure to contaminated landfill materials.

Operation and maintenance of the cap and drainage structures has been effective, except for the noted downchute repair in 2005. The landfill inspections should be sufficient to identify cap issues, as occurred in identifying the downchute repair need. There is also an increased awareness of the need to maintain the downchutes, so unscheduled visual checks of the downchutes occur more frequently.

Opportunities for system optimization observed during this review include some reduction in monitoring wells to be sampled and/or the frequency of the sampling. These modifications to the monitoring well network are set forth in Section 9 – Recommendations and Follow-up Actions.

The institutional controls, or ELURs, that are in place include prohibitions on the use or disturbance of groundwater until cleanup levels are achieved, and prohibitions on excavation activities, disturbance of the cap, and any other activities or actions that might interfere with the implemented remedy. No activities were observed that would have violated the institutional controls. The cap and the surrounding area were undisturbed, and no new uses of groundwater were observed. The fence around the Site is intact and in good repair.

7.2 Question B: Are the exposure assumptions, toxicity data, cleanup levels and remedial action objectives (RAOs) used at the time of remedy selection still valid?

Yes, some cleanup levels and toxicity data may have changed since the remedy selection, but the initial and changed parameters are still valid.

7.2.1 Changes in Exposure Pathways

The exposure pathways as indicated in the risk assessment and ROD are provided in Appendix C. There have been no changes in the physical conditions of the Site since approval of the decision documents. However, as of 2002 EPA prepared a Draft Vapor Intrusion Guidance document. This guidance addresses EPA's concern about inhalation

of VOCs from contaminated groundwater or soils which currently underlie buildings as well as which may come to be situated underneath a structure at some point in the future.

Where there are several VOCs identified in the groundwater at the Site and there are on-Site buildings, the indoor vapor concern was considered and evaluated. There is an on-Site Garage is located cross-gradient to the plume with VOCs. This Garage has an office on the eastern side of this structure. The EPA OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), dated November 2002 was used to assess the possible indoor air pathway along with the Connecticut RSR groundwater criteria.

With regard to this building, monitoring wells MW-S-3 (upgradient) to the south, MW-1S (crossgradient) to the west and MW-4S downgradient and north were used for the evaluation. MW-102S (crossgradient) to the east was also reviewed, but the only VOC detected was one J-flagged (estimated) acetone value and the SVOC bis-(2-ethylhexyl)phthalate, which is not considered sufficiently volatile per the Subsurface Vapor Intrusion Guidance. Therefore, there are no VOC affects to the west of the building. Of these monitoring wells, 1S is the well most affected by VOCs. Of the detected VOCs, only benzene was detected above its target groundwater concentration of 5 ppb in Table 2C of the guidance document. In the upgradient well S-3, benzene has never been detected above 5 ppb. In downgradient well 4S, benzene has not been detected above 5 ppb since June 15, 2004 and the highest benzene concentration detected in this well was 6.39 ppb on August 12, 2003.

This office is located cross-gradient to the plume with VOCs, is not located over the plume and an immediately upgradient well has not had VOCs detected above guidance criteria since the MNA sampling started in 2003. The cross gradient and downgradient wells are only slightly above or are below the EPA guidance criteria. In addition, the Connecticut RSR groundwater criteria for the indoor air pathway were reviewed. None of the VOCs in these wells exceed the Connecticut RSR proposed GWVC criteria for residential or industrial/commercial settings. For benzene, the Connecticut RSR proposed GWVC criteria for residential is 130 ug/l and for industrial/commercial settings it is 310 ug/l. Based on the Site conditions and guidance, the vapor intrusion pathway does not appear to be a concern for the on-Site office building. The groundwater flow direction and data do not suggest this will become an issue in the future, but if a change in the groundwater flow direction occurs or VOCs are detected in the upgradient well, such conditions would warrant further attention. Therefore, no changes in exposure pathways have occurred that would affect the protectiveness of the remedy. A copy of the Vapor Intrusion Pathway Summary Page and tables is included as Appendix D.

7.2.2 Changes in Toxicity, ARARs, and Other Contaminant Characteristics

Changes in Toxicity

(Not applicable). Because all groundwater cleanup goals were established based on the CT RSRs (as the most stringent of the criteria identified in the remedy) which were in turn based on background levels or limits of analytical resolution, there are no changes in toxicity and other contaminant characteristics that would affect the chosen remedy. Furthermore, as the groundwater cleanup levels established in the 2001 ROD are consistent with site specific background levels of contamination, they and the remedy are viewed as being protective of public health consistent with CERCLA expectations for remedial actions,).

Changes in ARARs, Standards, and TBCs (To Be Considered)

Cleanup levels were established in the ROD for groundwater for all chemicals of concern identified in the Baseline Risk Assessment found to pose an unacceptable risk to either public health or the environment. Cleanup levels were set based on the ARARs (e.g., non-zero Drinking Water Maximum Contaminant Level Goals (MCLGs), MCLs, and more stringent State Remediation Standard Regulations), as available. This resulted in groundwater cleanup levels for each chemical of concern being set at its background concentration, per Connecticut RSRs, Section 22a-133k-3(a). A list of tentative background concentrations was presented in the ROD. During the Remedial Action Phase, EPA in consultation with CTDEP will determine whether these concentrations represent background for this Site. EPA will only change these values in the ROD if they are necessary pursuant to Section 117(c) of CERCLA. A process often referred to as an Explanation of Significant Differences.

There is one change that has occurred in the Applicable, Relevant, or Appropriate Requirements (ARARs) and To Be Considereds (TBCs) since the ROD was signed. EPA adopted a lower Maximum Concentration Level (MCL) standard for arsenic in groundwater. This changed the standard from 50 ppb to 10 ppb, which became effective on January 22, 2006. This change in the arsenic MCL is greater than the more restrictive background concentration of 5 ppb as established in the ROD.

Other risk based cleanup goals as presented in the ROD remain substantively unchanged.

7.2.3 Expected Progress Towards Meeting RAOs

Groundwater modeling conducted during the FS (O'Brien & Gere Engineers, Inc. 2001a) estimated that natural attenuation would achieve the groundwater cleanup levels in the overburden in approximately 15.6 years, and in the bedrock aquifer in approximately 6 years. These results were obtained by simulating the flow of groundwater and the migration and attenuation of two COCs, 4-methylphenol and 2-butanone. At the time, these compounds were present in relatively high concentrations in groundwater. Consequently, the cleanup times for these compounds were considered to represent

conservative estimates of the time for remediation of all groundwater COCs. Based on calibration to trends in the groundwater monitoring data through the RI/FS period, rates of contaminant degradation were projected into the future through the process of the model calibration. However, due to uncertainties associated with contaminant transport modeling, the predicted cleanup times were considered rough estimates.

Previous review of historical groundwater quality data (Section 6.3) indicated that the concentrations of Site-related constituents are either remaining relatively stable, or are decreasing over time. Geochemical evidence that indicated subsurface conditions are amenable for microbially-mediated degradation included the following:

- an abundance of dissolved organic carbon that can be used as a carbon source (electron donor) by microbes;
- anaerobic conditions that sustain reductive dechlorination;
- presence of organic compounds that can undergo fermentation reactions (BTEX, ketones) that produce hydrogen, which can be utilized by microbes during reductive dechlorination;
- low concentrations of nitrate that will not suppress the reductive dechlorination pathway;
- low sulfate concentrations within the plume as compared to background, suggesting utilization as an electron acceptor;
- some degree of increased alkalinity in the plume compared to background suggesting that the plume is biologically active;
- decreases in oxidation-reduction potential in the plume as compared to background, suggesting the geochemical conditions within the plume are reducing due to biological activity;
- the presence of methane that suggests highly reducing conditions and microbial degradation; and
- groundwater pH ranges that are suitable for microbial populations.

In 2003, a long-term groundwater-monitoring program was initiated that was designed to assess the progress of natural attenuation over time. Summary results of the last five years of this monitoring program are shown in Tables 4 to 9. These data indicate that the COC concentrations are decreasing with time or are relatively stable. In some cases the decreases are significant, such as the total VOCs have decreased by about 1 order of magnitude (10,000 down to 1,000 ug/L (or 1 ppm)) in well MW-101S, which is located just downgradient of the landfill boundary and is indicated on isoconcentration contour figures. Isoconcentration contour figures for total VOCs and SVOCs and total BTEX are

shown in Figures 5 through 8A for 2003 and 2008 that further indicate the overall decline in concentrations.

With regard to the model for the two COCs, 4-methylphenol and 2-butanone, the sampling results indicate that actual Site conditions are following the general trend of the model predictions, and are generally decreasing in concentration at a greater rate than the model predictions. Graphs of concentration versus time for these two COCs are indicated on Figures 9 to 12. These graphs are presented for wells MW-101S and MW-5S, which represent the more affected monitoring wells located within the centerline of the plume. This graph shows the initial model predictions for the natural attenuation and groundwater extraction alternatives, along with the actual measured concentrations. These graphs indicate that the measured concentrations are lower than the model predictions, and that plume attenuation has exceeded expectations.

Two additional graphs of the centerline of the plume as it passes through the landfill are indicated in Figures 13 and 14 for total VOC and SVOC, total BTEX, and MNA parameters ferrous iron, methane, dissolved oxygen (DO), nitrate and chemical oxygen demand (COD). Figure 13 presents the graph of these data for November 2003, and Figure 14 shows the data for April 2008. These figures indicate low contaminant concentrations in groundwater upgradient of the landfill, increased concentrations in the landfill and declining concentrations downgradient of the landfill. The patterns of indicator parameters are consistent and expected, with DO and nitrate decreasing in the landfill as a result of biological activity, and rebounding downgradient, while the other parameters COD, methane and ferrous iron increase within the landfill footprint and then tend to attenuate downgradient of the landfill. The peak concentrations of most COCs show a marked decrease from 2003 to 2008, consistent with the overall decrease in the concentration of COCs within the plume.

Graphs of groundwater concentration trends with time for the COCs benzene; toluene; 1,4-dichlorobenzene; trichloroethene and 2,4-dimethlyphenol show similar decreasing concentration trends. These graphs are presented in Appendix E. For the COC metals arsenic, chromium and lead, the groundwater concentrations are typically at non-detect concentrations as indicated in Table 5. Higher concentrations are observed in the centerline of the plume starting in the landfill and immediately downgradient, but generally at low concentrations. A graph of the arsenic groundwater concentration trends is also included in Appendix E for the wells where arsenic has consistently been detected.

With regard to the surface water, seep and sediment sampling, the results of this sampling are consistent or lower than that of the post-NTCRA sampling indicating good progress towards meeting the RAO. For post-NTCRA sampling, the ROD indicated an acceptable risk for surface water and seeps and ongoing monitoring for sediment due to an uncertain risk. The uncertain risk was an ecological risk for benthic invertebrates. The ROD also noted that barium and manganese were identified as the only compounds exceeding the probable effects concentration (PEC) benchmark. Since 2003, the start of the post-ROD sampling, higher concentrations of barium and manganese were detected in the upstream sample Sed-3 (located at SW-3). The concentrations of these compounds were lower in

the downstream samples. Typically the middle sample (Sed-16) detected slightly higher barium and manganese concentrations than the downstream sample (Sed-9). As noted in Table 7the PEC concentrations for barium and manganese were exceeded in the upstream sample, the barium PEC was typically slightly exceeded in the mid-stream sample and there was one PEC exceedence for barium in 2007 in the downstream sample. The greater metal concentrations in the upstream sample may suggest a possible local condition with the metals occurring naturally in higher concentrations upstream. The upstream location is undeveloped with no obvious source for metals. The concentration change may also be associated with the relocation of the stream during the NTCRA.

7.3 Questions C: Other information that could call into question the protectiveness of the remedy?

No, there is no information that calls into question the protectiveness of the remedy.

7.4 Technical Assessment Summary

The review of documents, ARARs, risk assumptions, and the results of the Site inspection indicate that the remedy is functioning as intended by the ROD. The exposure assumptions, cleanup levels, and remedial action objectives (RAOs) used at the time of remedy selection remain valid. Some changes in agency-recognized toxicity factors have occurred for selected Site-related chemicals, but these changes have not affected cleanup levels, nor are they expected to significantly affect overall Site risk. Long-term monitoring data indicate that the groundwater plume is shrinking, contaminant concentrations are decreasing or are stable and that acceptable progress is being made towards meeting RAOs.

8.0 ISSUES

As of the date of this writing, there have been no significant problems or issues that prevent the response action from being protective of human health and the environmental upon completion.

9.0 RECOMMENDATIONS AND FOLLOW-UP ACTIONS

There were no issues affecting the protectiveness of the remedy requiring follow-up actions. However, there are recommendations not directly related to the protectiveness of the remedy that are presented here. These recommendation and follow-up actions include improved operation & maintenance (O&M) activities, better laboratory performance and a revised sampling plan to optimize the remedy.

For the O&M activities the focus of this recommendation is associated with the monitoring of the cap and its integrity based on the 2005 downchute failure. As part of the EPA annual inspection, the cap is reviewed. The RRDD uses an engineer to conduct

quarterly landfill inspections for compliance with Connecticut requirements. The RRDD has informed this engineer of the downchute issue to increase the awareness of the downchute conditions in reporting to the RRDD. The RRDD will also notify the EPA of a condition that may affect the integrity of the downchute.

Based on the decreasing size of the plume and COC concentrations, a revised sampling plan to optimize the remedy is recommended. This includes changes in wells to be sampled and the frequency of the sampling. As an example, the plume is now deeper downgradient in the monitoring well couplet MW-111. Currently, MNA parameters are sampled in the shallow well MW-111S and MW-111B; however, there are increased contaminant concentrations in the deeper well MW-111I (intermediate bedrock), which is not monitored for MNA parameters. Therefore, it is recommended that MW-111S no longer be monitored for MNA parameters, but well MW-111I will have the MNA parameters added to its suite of analyses.

Refer to Table 12 for a complete listing of recommended changes to sampling locations, rationale and frequency to optimize the remedy.

10.0 PROTECTIVENESS STATEMENT

This five-year review has found that the remedy is functioning as designed. The groundwater remedy is expected to be protective of human health and the environmental upon completion, when groundwater cleanup goals are achieved through MNA, which was estimated in the Remedial Investigation and Feasibility Study (RI/FS) to occur in about 16 years. In the interim, exposure pathways that could result in unacceptable risks are being controlled and institutional controls are preventing exposure to, or the ingestion of, contaminated groundwater. Long-term protectiveness of the remedial action will be verified by obtaining additional groundwater samples to evaluate the contaminant plume extent and MNA progress. Because the Remedial Action at all OUs are protective, the Site is protective of human health and the environment.

11.0 NEXT REVIEW

The due date for the second five-year review is September 2013.

REFERENCES

- Fuss & O'Neill 1992. RRDD#1 Landfill Closure Plan, Barkhamsted CT, September.
- O'Brien & Gere Engineers, Inc. 1996. Remedial Investigation (RI) -Barkhamsted-New Hartford Landfill Superfund Site. February.
- O'Brien & Gere Engineers, Inc. 1997. Remedial Action Plan for Non-Time Critical Removal Action, Barkhamsted-New Hartford Landfill Superfund Site.
- O'Brien & Gere Engineers, Inc. 2001a. Feasibility Study-Barkhamsted-New Hartford Landfill Superfund Site. June.
- O'Brien & Gere Engineers, Inc. 2001b. Operation and Maintenance manual-Barkhamsted Landfill Pleasant Valley, Connecticut Landfill Closure. October.
- State of Connecticut Department of Environmental Protection 1990. Consent Order #SRD-072 between the State of Connecticut and the Regional Refuse Disposal District No. 1.
- United States Environmental Protection Agency (U.S. EPA) 1991. Administrative Order on Consent. Docket #I-91 –1128 between the EPA, the State of Connecticut, and the PRP Group. October 4.
- United States Environmental Protection Agency (U.S. EPA) 2001a. Comprehensive Five-Year Review Guidance. June.
- United States Environmental Protection Agency (U.S. EPA) 2001b. EPA Superfund Record of Decision: Barkhamsted New Hartford Landfill, EPA ID: CTD980732333, OU1, Barkhamsted, CT. EPA/OD/R01-01/001, September 28.
- United States of America and State of Connecticut v. Regional Refuse Disposal District No. 1, et al. 2003. Consent Decree, U.S. District Court for the District of Connecticut. May 7.
- United States Environmental Protection Agency (U.S. EPA): OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), dated November 2002, EPA530-D-02-004.
- State of Connecticut Department of Environmental Protection: Draft Proposed Revisions to the Remediation Standard Regulations (RSR).

APPENDIX A

Landfill Inspection Checklist

I. SITE INFORMATION					
Site Name: Barkhamsted Landfill	Date of Inspection: 6/1	9/08, 6/25/08, 8/6/08			
Location and Region: Barkhamsted, CT	EPA ID: CTD9807323	33			
Agency, office, or company leading the five-year review: EPA-Region I	Weather/temperature: C	Clear / 85 F			
Remedy Includes (Check all that apply)					
□ Landfill cover/containment	Monitored Natural A	Attenuation			
Access Controls	Groundwater contai	nment			
	☐ Vertical Barrier Wa	lls			
Groundwater pump and treatment	Other				
Surface water collection and treatment					
Attachments: Inspection team roster	Site Map				
II. INTERVIEWS (Check all that apply)				
1. O&M Site Manager: Jim Hart	General Manager	6/19/2008			
(Name)	(Title)	(Date)			
Interviewed <u>Jim Hart</u> at site <u>office</u> 🔀 At office	By phone Tel. No				
Problems, suggestions; Report attached					
2. O&M Site staff:					
(Name)	(Title)	(Date)			
3. Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.) Fill in all that apply					
Agency Town of Barkhamsted					
Contact Donald Stein 1st Selectman	6/19/2008	(860) 379-8285			
(Name) (Title)	(Date)	(Phone No.)			
Problems; suggestions; Report attached					
Agency Contact (Name) (Title) Problems; suggestions; Report attached	(Date)	(Phone No.)			
Agency Contact (Name) (Title) Problems; suggestions; Report attached	(Date)	(Phone No.)			
Agency Contact (Name) (Title) Problems; suggestions; Report attached	(Date)	(Phone No.)			

4. Other Interviews (optional) Report attached.	

III. ON-SITE DOCUMENTS &	<u>RECORDS VERIF</u> IED	(Check all that a	pply)_
1. O&M Documents			
O&M Manual	Readily Available	Up to Date	□ N/A
As-built drawings	🔀 Readily Available	Up to Date	N/A
☐ Maintenance Logs	Readily Available	Up to Date	□ N/A
Remarks:			
2. Site-Specific Health and Safety	Readily Available	Up to Date	N/A
Plan			
Contingency Plan /Emergency		Up to Date	∐ N/A
Response Plan			
Remarks:			
3. O&M and OSHA Training	Readily Available	Up to Date	⊠ N/A
Records			
Remarks:			
1.70			· · · · · · · · · · · · · · · · · · ·
4. Permits and Service Agreements			
Air Discharge Permit	Readily Available	Up to Date	∑ N/A
Effluent Discharge	Readily Available	Up to Date	⊠ N/A
Waste Disposal, POTW	Readily Available	Up to Date	⊠ N/A
Other permits	Readily Available	Up to Date	≥ N/A
Remarks:			
5 C C	D 11 A .11-1.1-	[] [] [] 4- [] - []	N/A
5. Gas Generation Records	Readily Available	Up to Date	⊠ N/A
Remarks:			
6. Settlement Monument Records	Readily Available	Up to Date	N/A
Remarks:	Readily Available		M N/A
Kemarks.			
7. Groundwater Monitoring Records	Readily Available	Up to Date	N/A
Remarks:	Z M Reddily Manuale		1.1/2.
8. Leachate Extraction Records	Readily Available	Up to Date	N/A
Remarks:	<u></u>	<u> </u>	
9. Discharge Compliance Records	Readily Available	Up to Date	N/A
☐ Air	Readily Available	Up to Date	⊠ N/A
Water (effluent)	Readily Available	Up to Date	⊠ N/A
Remarks:		·	
10. Daily Access/Security Logs	Readily Available	Up to Date	N/A
Remarks:	- -	-	

IV. O&I	M COSTS
1. O&M Organization	
State in-house	Contractor for State
	○ Contractor for PRP
Federal Facility in-house	Contractor for Federal Facility
Other O&M costs not provided.	
2. O&M Cost Records	
Readily Available	Up to date
Funding mechanism/agreement in place	
Original O&M cost estimate	Breakdown attached
	or review period if available
From To	Breakdown attached
$\overline{\text{(Date)}}$ $\overline{\text{(Date)}}$ (To	tal Cost)
From To	Breakdown attached
	tal Cost)
From To	Breakdown attached
	tal Cost)
From To	Breakdown attached
	tal Cost)
From To	Breakdown attached
	tal Cost)
	,
3. Unanticipated or Unusually High O&M	Costs During Review Period
Describe costs and reasons:	Ü
V. ACCESS AND INSTITUTIONA	L CONTROLS Applicable N/A
A. Fencing	•
1. Fencing damaged Location shown or	n site map Gates secured N/A
Remarks:	
B. Other Access Restrictions	
2. Signs and other security measures	Location shown on site map N/A
Remarks:	·

C. Institutional Controls (IC)	
1. Implementation and enforcement	
Site conditions imply ICs not properly implemented Site conditions imply ICs being fully enforced Yes No	☐ N/A ☐ N/A
Type of monitoring (e.g., self-reporting, drive-by) Frequency Responsible party/agency CTDEP	
Contact Maurice Hamel Supervisor, Rem. Div. 6/19/2008 (Name) (Title) (Date) Reporting is up-to-date Yes No Reports are verified by the lead agency Yes No Specific requirements in deed or decision documents Yes No have been met Violations have been reported Yes No	(860) 424-3787 (Tel No.)
Other problems or suggestions: Report attached CTDEP Manages their ELURs Environmental Land Use Restrictions which the deed.	are recorded on
2. Adequacy	□ N/A
D. General	
1. Vandalism/trespassing	nndalism evident
2. Land use changes on site N/A Remarks:	
3. Land use changes off site N/A Remarks:	
VI. GENERAL SITE CONDITIONS	
A. Roads Applicable N/A	
1. Roads damaged Location shown on site map Roads Adequent Remarks: Good condition	ate
B. Other Site Conditions Remarks:	

VII. LANDFILL COVERS Applicable N/A			
A. Landfill Surface			
1. Settlement (Low spots) Areal Extent	Location shown on site map Depth	Settlement not evident	
Remarks:			
2. Cracks	Location shown on site map		
Lengths	Widths	Depths	
Remarks:			
3. Erosion	☐ Location shown on site map	Erosion not evident	
Areal Extent	Depth		
Remarks: See Attached Report	and Pictures		
4. Holes	Location shown on site map	⊠Holes not evident	
Areal Extent	Depth		
Remarks:		574	
5. Vegetative Cover Gra Gra Trees/Shrubs (indicate size Remarks:		ed 🛛 No signs of stress	
6. Alternative Cover (armored Remarks:	I rock, concrete, etc.) Applicab	ole 🛛 N/A	
7. Bulges	Location shown on site map	⊠Bulges not evident	
Areal Extent	Height		
Remarks:			
8. Wet Areas/Water Damage		evident	
☐ Wet Areas ☐ Locat	ion shown on site map	Areal Extent	
☐ Ponding ☐ Locat	ion shown on site map	Areal Extent	
☐ Seeps ☐ Locat	ion shown on site map	Areal Extent	
	ion shown on site map	Areal Extent	
Remarks:	·		
9. Slope Instability Slide	Location shown on site map	⊠No evidence of slope instability	
Areal Extent:	t		

Remarks:			

B. Benches Applicable	□ N/A	
(Horizontally constructed me	ounds of earth placed across a ste	ep landfill side slope to
•	slow down the velocity of surfa	•
convey the runoff to a lined	•	•
1. Flows Bypass Bench	Location shown on site m	ap N/A or okay
Remarks:		
2. Bench Breached	Location shown on site m	ap N/A or okay
Remarks:	Zocacion shown on site in	
Remarks.		
3. Bench Overtopped	Location shown on site m	ap N/A or okay
Remarks:	Location shown on site in	ap INA of okay
Kemarks.		
C. Letdown Channels 🛛	Applicable N/A	
	control mats, riprap, grout bags, of	or achiens that descend down
•	over and will allow the runoff wat	er conected by the benches to
	vithout creating erosion gullies.)	
1. Settlement	Location shown on site map	No evidence of settlement
Areal extent	Depth	
Remarks:		
2. Material Degradation	Location shown on site map	No evidence of degradation
Areal extent	Depth	
Remarks:		
3. Erosion	Location shown on site map	No evidence of erosion
Areal extent	Depth	
Remarks: See report attached	d	
•		
4. Undercutting	Location shown on site map	No evidence of
		undercutting
Areal extent	Depth	5
Remarks:	1	
5. Obstructions	Type	No obstructions
Location shown on site n	• 1	
Remarks:		
6. Excessive Vegetative Gre	owth Type	-
No evidence of excessive		
Vegetation in channels de	•	
Location shown on site n		
	•	ron was notified and was da
Remarks. Weeds growing of	n gabio <u>n d</u> ownchutes. Site manag	ger was nounted and weeds were

addressed			

D. Cover Penetrations 🛛 Applicable 🔲 N/A
1. Gas Vents
2. Gas Monitoring Probes ☐ Properly Secured/Locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ Evidence of leaking at penetration ☐ Needs maintenance ☐ N/A Remarks:
3. Monitoring Wells (within surface of landfill) ☑ Properly Secured/Locked ☑ Functioning ☑ Routinely sampled ☑ Good condition ☐ Evidence of leaking at penetration ☐ Needs maintenance ☐ N/A Remarks:
4. Leachate Extraction Wells ☐ Properly Secured/Locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ Evidence of leaking at penetration ☐ Needs maintenance ☐ N/A Remarks:
5. Settlement Monuments Located Routinely sampled N/A Remarks:
E. Gas Collection and Treatment Applicable N/A
1. Gas Treatment Facilities Flaring Thermal destruction Collection for reuse Good condition Needs maintenance Remarks:
2. Gas Collection Wells, Manifolds and Piping Good condition Needs maintenance Remarks:
3. Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings) Good condition Needs maintenance N/A Remarks:

F. Cover Drainage Layer 1. Outlet Pipes Inspected	☐ Applicable ☐ Functioning	V/A	⊠ N/A
Remarks:	runctioning		N/A
Terraino.			
2. Outlet Rock Inspected	☐ Functioning		⊠ N/A
Remarks:			
C. D. 4 4' (C. 1' 4 D.		N/A	
G. Detention/Sediment Po	onds	Depth	Siltation not evident
Remarks:	Extent	Deptil	Sittation not evident
2. Erosion Areal	Extent	Depth	Erosion not evident
Remarks:			
		.	
3. Outlet Works	ctioning 🔀 N/A		
Remarks:			
4. Dam Functioning	N/A		
Remarks:	_		
H. Retaining Walls A		•.	
1. Deformations	Location shown	•	Deformation not evident
Horizontal displacement Rotational displacement	VEITIC	al displacemer	it
Remarks:			
I. Perimeter Ditches/Off-S			·
1. Siltation	Location shown	•	Siltation not evident
Areal extent Remarks:	Depth	1	
Remarks.			
2. Vegetative Growth	Location shown	on site map	⊠ N/A
☐ Vegetation does not imp	bede flow		
Areal extent	Туре		
Remarks:			
3. Erosion	Location shown	on site man	⊠ N/A
Areal extent	Туре		<u> </u>
Remarks:	· ·		
4. Discharge Structure	Functioning		N/A
Remarks:			

VIII. VERTICAL BARRIER WALLS ☐ Applicable ☒ N/A
1. Settlement Location shown on site map Settlement not evident
Areal extent Type
Remarks:
2. Performance Monitoring Type of monitoring
Performance not monitored Frequency
Evidence of breaching Head differential
Remarks:
IX. GROUNDWATER/SURFACE WATER REMEDIES Applicable N/A
A. Groundwater Extraction Wells, Pumps and Pipelines Applicable N/A
1. Pumps, Wellhead Plumbing and Electrical
Good condition All required wells properly Needs N/A
operating maintenance
Remarks:
2. Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances
Good condition Needs maintenance
Remarks:
3. Spare Parts and Equipment
Readily Good condition Requires Needs to be
Available Upgrade provided
Remarks:
· · · · · · · · · · · · · · · · · · ·
B. Surface Water Collection Structures, Pumps and Pipelines Applicable N/A
1. Collection Structures, Pumps and Electrical
Good condition Needs maintenance
Remarks:
2. Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other
Appurtenances
Good condition Needs maintenance
Remarks:
3. Spare Parts and Equipment
Readily Good condition Requires Needs to be
Available Upgrade provided
Remarks:

C. Treatment System Applicable N/A
1. Treatment Train (Check components that apply)
☐ Metals Removal ☐ Oil/water separation ☐ Bioremediation
Air stripping Carbon adsorbers
Filters
Additive (e.g., chelation agent, flocculent)
Others
Good condition Needs maintenance
Sampling ports properly marked and functional
Sampling/maintenance log displayed and up to date
Equipment properly identified
Quantity of groundwater treated annually
Quantity of surface water treated annually
Remarks:
2. Electrical Enclosures and Panels (properly rated and functional)
N/A ☐ Good condition ☐ Needs maintenance
Remarks:
3. Tanks, Vaults, Storage Vessels
N/A Good condition Proper Secondary Needs maintenance
containment
Remarks:
4. Discharge Structures and Appurtenances
N/A Good condition Needs maintenance
Remarks:
5. Treatment Building(s)
N/A ☐ Good condition (esp. roof and doorways ☐ Needs repair
Chemicals and equipment properly stored
Remarks:
6. Monitoring Wells (pump and treat remedy)
secured/locked
All required wells located Needs maintenance N/A
Remarks:

D. Monitoring Data	1. W. 2. W. 1. W.	¥******
D. Monitoring Data		
1. Monitoring Data	5 7	
Is routinely submitted on time	$igstyle \mathbb{M}$ Is of acceptable quality	
2. Monitoring Data Suggests:		
Groundwater plume is effectively		ions are declining
contained		
Remarks:		
E. Monitoring Natural Attenuation	(MNA)	
1. Monitoring Wells (MNA remedy)		
□ Properly	⊠Routinely sampled	Good condition
secured/locked		
☐ All required wells located	Needs maintenance	□ N/A
Remarks:		
X. C	THER REMEDIES	
If there are remedies applied at the site	which are not covered above.	attach an inspection
sheet describing the physical nature ar		
An example would be soil vapor extra	•	,
the state of the s	RALL OBSERVATIONS	
A. Implementation of the Remedy		
Describe issues and observations relat	ing to whether the remedy is e	ffective and functioning
as designed. Begin with a brief statem	•	-
contain contaminant plume, minimize		- '
Remedy is to contain contaminants an	-	The state of the s
plume to the compliance boundary.	a plante coming from the land	im and remediate the
prune to the comphance boundary.		

B. Adequacy of O&M

Describe issues and observations related to the implementation and scope of the O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.

It was observed, after a rain storm that some of the surface water was discharging to the side of the downchute at the bottom of the slope rather than to and within the downchute channel. The side slope of the downchute at the bottom may need to be corrected to prevent side leakage.

Small plants near the gas vents have been observed and should be removed to minimize the root penetration into the underlying low permeability layers.

APPENDIX B

Applicable or Relevant and Appropriate Requirements (ARARs)

APPENDIX B

ARARs Table

BARKHAMSTED-NEW HARTFORD SUPERFUND SITE, BARKHAMSTED, CONNECTICUT

POTENTIAL STATE AND FEDERAL CHEMICAL-SPECIFIC ARARS

Authority	Requirement	<u>Status</u>	Requirement Synopsis	Action Taken to Meet ARAR
GROUNDWATER				
Federal Requirements	Safe Drinking Water Act (SDWA) Maximum Contaminant Levels (MCLs) 40 CFR §141.11 - 141.16	Relevant and Appropriate	MCLs have been promulgated for several common organic and inorganic contaminants. These levels regulate the concentration of contaminants in public drinking water supplies, but may also be considered relevant and appropriate for groundwater aquifers used for drinking water.	COPCs were compared to MCLs. MCLs were utilized to evaluate the clean-up criteria.

BARKHAMSTED-NEW HARTFORD SUPERFUND SITE, BARKHAMSTED, CONNECTICUT

POTENTIAL STATE AND FEDERAL CHEMICAL-SPECIFIC ARARS

<u>Authority</u>	Requirement	Status	Requirement Synopsis	Action Taken to Meet ARAR
	Maximum Contaminant Level Goals (MCLGs) 40 CFR §141.50-141.51	Relevant and Appropriate	MCLGs are health-based criteria to be considered for drinking water sources. MCLGs are available for several organic and inorganic contaminants. When non-zero MCLGs are available, they are generally used in lieu of MCLs as initial goals for the remedy.	When non-zero MCLGs are available, they are generally used in lieu of MCLs as initial goals for the remedy to be attained at the compliance boundary. A restriction on use of groundwater within the compliance boundary will be established and an appropriate monitoring program will be conducted until the groundwater concentrations are less than the MCLGs.

BARKHAMSTED-NEW HARTFORD SUPERFUND SITE, BARKHAMSTED, CONNECTICUT

POTENTIAL STATE AND FEDERAL CHEMICAL-SPECIFIC ARARS

<u>Authority</u>	<u>Requirement</u>	Status	Requirement Synopsis	Action Taken to Meet ARAR
State Requirements	Standards for Quality and Adequacy of Public Drinking Water RCSA §19-13-B101 through B102	Relevant and Appropriate	Regulations similar to the Safe Drinking Water Act where by standards for water quality in private water supply systems and standards for quality of public drinking water have been established.	These standards will be compared to federal standards. If the state standards are more stringent than the federal standards, then the state standards will be met by the remedy.

BARKHAMSTED-NEW HARTFORD SUPERFUND SITE, BARKHAMSTED, CONNECTICUT

POTENTIAL STATE AND FEDERAL CHEMICAL-SPECIFIC ARARS

Authority	Requirement	Status	Requirement Synopsis	Action Taken to Meet ARAR
	Remediation Standard Regulations	Applicable	Substances that are part of a release at a site must be remediated. In some cases,	These standards will be compared to federal standards. If the state standards are more stringent than the federal standards, then the
	RCSA		groundwater must be remediated to background concentrations. For	state standards will be met by the remedy. Under state standards, all substances in the
	§22a-133k- 1through 3		other cases, as described in §22a- 133k-3(d)(1) and (2), the	groundwater plume will be remediated to background concentrations, unless
			regulations provide specific numeric clean up criteria for a wide	conditions listed in §22a-133k-3(d)(1) and (2) are met.
			variety of contaminants in groundwater, surface water and	
			soil vapor. Any substance which is part of a release but does not have	
			established criteria, criteria must be derived and approved by the Commissioner.	
			Commissioner	

State Requirements Water Quality Standards CGS §22a-426	Applicable	Connecticut's Water Quality Standards were adopted under this statute. They establish specific numeric criteria, and anti- degradation policies for groundwater and surface water. The groundwater classification of the Site is GA and the state's goal is to restore the groundwater to a quality consistent with its use for drinking without treatment.	Remedial activities will be under taken in a manner which is consistent with the antidegradation policy in the water quality standards. If any remedial activities occur that are regulated under these provisions, the use of engineering controls and best management practices may be required to prevent or minimize adverse impacts to the waters of the state.
---	------------	---	--

•

APPENDIX C

Potentially Complete Exposure Pathways

Appendix CPotentially complete exposure pathways (from USEPA, 2001)

					PRE-	NTCRA			POST-NT	CRA	
					Rece	gate -			Becc	otor	;
				Hus	nac	Б	nta	Hui	i ali:	Bio	Aa
Orimary Source	Enmary Release Mechanism	Secondary Sources Pathways	Ergosuto Routo	Trespossers	Residents	Terrestria	Aquatic	Trespassers	Residenta	Terrostriai	Aquatic
			Ingestion	X	Х	×		*	*	Xd	
		Soil	Dermal	х	X	χ		*	*	Xd	
Landfill	Infiltration/	 	Plant Uptake			Х				Xa	
Waste	Runolf	[Food Web			Х				Χą	
		Ground-	Ingestion	er to the transfer was assessment	Х				*		
		water	Dermal		Х		1		*		
			Dermal		Ι		X				X ^A
		Surface Water &	Ingestion			Х				Xa	
		Sediments	Food Web			Х		and the second s		Xa	

^{*} Exposure prevented by capping or institutional controls

 X^{\pm} Exposure only to media outside of cap

APPENDIX D

Vapor Intrusion Pathway Summary Page

Appendix D Vapor Intrusion Pathway Summary Five-Year Review Report 2008 Barkhamsted Landfill

As of 2002 EPA prepared a Draft Vapor Intrusion Guidance document. This guidance addresses EPA's concern about inhalation of volatile organic compounds (VOCs) from contaminated groundwater or soils which currently underlie buildings as well as which may come to be situated underneath a structure at some point in the future.

Where there are several VOCs identified in the groundwater at the Site and there are on-Site buildings, the indoor vapor concern was considered and evaluated. There is an on-Site Garage that is located cross-gradient to the plume with VOCs. This garage has an office on the eastern side of this structure. The EPA OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), dated November 2002, was used to asses the possible indoor air pathway along with the Connecticut RSR groundwater criteria.

With regard to this building, monitoring wells MW-S-3 (upgradient) to the south, MW-1S (crossgradient) to the west and MW-4S downgradient and north were used for the evaluation. MW-102S (crossgradient) to the east was also reviewed, but the only VOC detected was one J-flagged (estimated) acetone value and the SVOC bis-(2-ethylhexyl)phthalate, which is not considered sufficiently volatile per Table 1 of the Subsurface Vapor Intrusion Guidance. Therefore, there are no VOC affects to the west of the building. Of these monitoring wells, 1S is the well most affected by VOCs. Of the detected VOCs, only benzene was detected above its target groundwater concentration of 5 ppb in Table 2C of the guidance document. In the upgradient well S-3, benzene has never been detected above 5 ppb. In downgradient well 4S, benzene has not been detected above 5 ppb since June 15, 2004 and the highest benzene concentration detected in this well was 6.39 ppb on August 12, 2003.

This office is located cross-gradient to the plume with VOCs, is not located over the plume and an immediately upgradient well has not had VOCs detected above guidance criteria since the MNA sampling started in 2003. The cross gradient and downgradient wells are only slightly above or are below the EPA guidance criteria. In addition, the Connecticut RSR groundwater criteria for the indoor air pathway were reviewed. The Connecticut criteria are less stringent than the Subsurface Vapor Intrusion Guidance. None of the VOCs in these wells exceed the Connecticut RSR proposed GWVC criteria for residential or industrial/commercial settings. For benzene, the Connecticut RSR proposed GWVC criteria for residential is 130 ug/l and for industrial/commercial settings it is 310 ug/l. Based on the Site conditions and guidance, the vapor intrusion pathway does not appear to be a concern for the on-Site office building. The groundwater flow direction and data do not suggest this will become an issue in the future, but if a change in the groundwater flow direction occurs or VOCs are detected in the upgradient well, such conditions would warrant further attention. Therefore, no changes in exposure pathways have occurred that would affect the protectiveness of the remedy.

A copy of the Vapor Intrusion Pathway Summary Page and tables are attached.

VII. VAPOR INTRUSION PATHWAY SUMMARY PAGE

Fa	cility Name: Bark hamsted Landfill Transfer Station Office
Fa	cility Address: Regional Refuse Disposal District No. 1
<u>Pri</u>	cility Address: Regional Refuse Disposal District No. 1 31 New Hartford Read Pleasant Valley, CT 06063
	Q1: Constituents of concern Identified?
	X'Yes
	No (If NO, skip to the conclusion section below and check NO to indicate the pathway is incomplete.)
	Q2: Currently inhabited buildings near subsurface contamination?
	XYes
	No
	Areas of future concern near subsurface contamination?
	Yes Yes
	No (If NO, skip to the conclusion section below and check NO to indicate the pathway is incomplete.)
<u> </u>	Q3: Immediate Actions Warranted?
	Yes
	No
<u>Sec</u>	condary Screening Summary
	Vapor source identified:
	Groundwater
	Soil
	Insufficient data
	Indoor air data available?
	Yes Yes
	X_No
	Indoor air concentrations exceed target levels?
	Yes Not applicable.
	<i>No</i>

Subsurface	data	evaluation:	(Circle al	ppropriate	answers	below	,)

	Q4 Levels	Q5 Levels	Data Indicates	
Medium	Exceeded?	Exceeded?	Pathway is Complete?	
Groundwater	YES/NO/NA/INS	YES NO / NA / INS	YES (NO) INS	
Soil Gas	YES/NO/NA/INS	YES/NO/NA/INS		
L BOIL Gas			owngradient well (MW	

NA = not applicable

NS = insufficient data available to make a determination

IN	S = insufficient data available to make a determination
Si	te-Specific Summary
	Have the nature and extent of subsurface contamination, potential preferential pathways and overlying building characteristics been adequately characterized to identify the most-likely-to-be-impacted buildings?
	X Yes
	No
	N/A
	EPA recommends that if a model was used, it be an appropriate and applicable model that represents the conceptual site model. If other means were used, document how you determined the potentially most impacted areas to sample. EPA recommends that predictive modeling can be used to support Current Human Exposures Under Control EI determinations without confirmatory sampling to support this determination. Current Human Exposures Under Control EI determinations are intended to reflect a reasonable conclusion by EPA or the State that current human exposures are under control with regard to the vapor intrusion pathway and current land use conditions. Therefore, if conducting evaluation for an EI determination, document that the Pathway is Incomplete and/or does not pose an unacceptable risk to human health for EI determinations.
	Are you making an EI determination based on modeling and does the model prediction indicate that determination is expected to be adequately protective to support Current Human Exposures Under Control EI determinations?
	Yes
	<i>No</i>
	N/A
	Do subslab vapor concentrations exceed target levels?
	Yes
	No NA
	× N/A

Do indoor air concentrations exceed target levels?	
140	
Conclusion	
Is there a Complete Pathway for subsurface vapor intrusion to indoor air?	
Below, check the appropriate conclusion for the Subsurface Vapor to Indoor Air Pathway evaluation and attach supporting documentation as well as a map of the facility.	
NO - the "Subsurface Vapor Intrusion to Indoor Air Pathway" has been verified to be incomplete for the Barkhamsted Transfer Station Office facility, EPA ID #, located at Barkhamsted / CT. This determination is based on a review of site information, as suggested in this guidance, check as appropriate: for current and reasonably expected conditions, or based on performance monitoring evaluations for engineered exposure controls. This determination may be re-evaluated, where appropriate, when the Agency/State becomes aware of any significant changes at the facility.	
YES -The "Subsurface Vapor to Indoor Air Pathway" is Complete. Engineered controls, avoidance actions, or removal actions taken include:	
UNKNOWN - More information is needed to make a determination.	
Locations where References may be found: Backhansted Five-Year Review Report-2008.	
melusion there a Complete Pathway for subsurface vapor intrusion to indoor air? low, check the appropriate conclusion for the Subsurface Vapor to Indoor Air Pathway duation and attach supporting documentation as well as a map of the facility. No - the "Subsurface Vapor Intrusion to Indoor Air Pathway" has been verified to be incomplete for the Barkhausted Transfer Static, Office facility, EPA ID #, located at Barkhausted This determination is based on a review of site information, as suggested in this guidance, check as appropriate: for current and reasonably expected conditions, or based on performance monitoring evaluations for engineered exposure controls. This determination may be re-evaluated, where appropriate, when the Agency/State becomes aware of any significant changes at the facility. YES—The "Subsurface Vapor to Indoor Air Pathway" is Complete. Engineered controls, avoidance actions, or removal actions taken include:	
(name)	
(phone #)	
(e-mail)	

Table 1: Question 1 Summary Sheet.

		,		
CAS No.	Chemical	is Chemical Sufficiently Toxic? ¹	is Chemical Sufficiently Volatile? ²	Check Here if Known or Reasonably Suspected To Be Present ³
	Acenaphthene	YES	YES	
	Acetaldehyde	YEŞ	YES	-
	Acetone	YE\$	YES	
75058	Acetonitrile	YEŞ	YES	
98862	Acetophenone	YEŞ	YES	
	Acrolein	YEŞ	YES	
	Acrylonitrile	YES	YEŞ	
309002		YES	YES	
	alpha-HCH (alpha-BHC)	YES	YES	
	Aniline	YES NO	NO YES	NA NA
	Anthracene Benz(a)anthracene	YES	NO TES	NA NA
	Benzaldehyde	YES	YES	NA_
	Benzene	YES	YES	X
	Benzo(a)pyrene	YES	NO NO	NA NA
	Benzo(b)fluoranthene	YES	YES	† <u></u> -
	Benzo(k)fluoranthene	NO	NO	NA NA
	Benzoic Acid	NO	NONO	NA
100516	Benzyl alcohol	YES	NO	NA
100447	Benzylchloride	YES	YES	
	beta-Chloronaphthalene	YES	YES	
	beta-HCH (beta-BHC)	YES	NO	NA
92524	Biphenyl	YES	YES	
	Bis(2-chloroethyl)ether	YES	YES	
	Bis(2-chloroisopropyl)elher Bis(2-ethylhexyl)phthalate	YES NO	YES NO	NIA
	Bis(chloromethyl)ether	YES	YES	NA
	Bromodichloromethane	YES	YES -	
	Bromoform	YES	YES	
	1,3-Butadiene	YES	YES	
	Butanol	YES	NO	NA NA
85687	Butyl benzyl phthalate	NO	NO	NA NA
	Carbazole	YES	NO	NA
	Carbon disulfide	YES	YES	
	Carbon tetrachloride	YES	YES	
	Chlordane	YES	YES	
	2-Chloro-1,3-butadiene (chloroprene)	YES	YES	
	Chlorobenzene 1 Chlorobytene	YES	YES	
	1-Chlorodulane Chlorodibromomethane	YES YES	YES YES	
	Chlorodifluoromethane	YES	YES	
	Chloroethane (ethyl chloride)	YES	YES .	
	Chloroform	YES	YES	
	2-Chlorophenol	YES	YES	- 1
	2-Chloropropane	YES	YES	
218019	Chrysene	YES	YES	
	cls-1,2-Dichloroethylene	YES	YES	
123739	Crotonaldehyde (2-butenal)	YES	YES	
	Curnene	YES	YES	
72548		YES	NO	NA
72559 50293		YES	YES	
	Dibenz(a,h)anthracene	YES YES	NO NO	NA NA
	Dibenzofuran	YES	YES	INA
	1,2-Dibromo-3-chloropropane	YES	YES	
	1,2-Dibromoethane (ethylene dibromide)	YES	YES	
	1,3-Dichlorobenzene	YES	YES	
	1,2-Dichlorobenzene	YES	YES	
	1,4-Dichiorobenzene	YES	YES	X
	3,3-Dichlorobenzidine	YES	NO	NA
75718	Dichlorodifluoromethane	YES	YES	

Table 1: Question 1 Summary Sheet.

				· · · · · · · · · · · · · · · · · · ·
CAS No.	Chemical	is Chemical Sufficiently Toxic? ¹	Is Chemical Sufficiently Volatile? ²	Check Here if Known or Reasonably Suspected To Be Present ³
	1,1-Dichloroethane	YES	YES	
	1,2-Dichloroelhane	YES	YES	
	1,1-Dichloroethylene	YES	YES	
120832	2,4-Dichlorophenol	YES	NO	NA
78875	1,2-Dichloropropane	YES	_ YES	
	1,3-Dichloropropene	YES	YES	
	Dieldrin	YES	YES	
	Diethylphthalate	YES	NO NO	NA
	2,4-Dimethylphenol	YES	NO	NA 🔀
	Dimethylphthalate Di-n-butyl phthalate	NA NO	NO NO	NA NA
	4,6-Dinitro-2-methylphenol (4,6-dinitro-o-cresol)	YES	NO NO	NA NA
	2,4-Dinitrophenol	YES	NO NO	NA NA
	2,4-Dinitrotoluene	YES	NO NO	NA NA
	2,6-Dinitrotoluene	YES	NO NO	NA NA
	Di-n-octyl phthalate	NO	YES	NA NA
	Endosulfan	YES	YES	
	Endrin	YES	NO	NA
	Epichlorohydrin	YES	YES	
	Ethyl ether	YES	YE\$	
	Ethylacetate	YES	YES	
	Ethylbenzene	YES	YES	
	Ethylene oxide Ethylmethacrylate	YES YES	YES YES	
	Fluoranthene	NO	YES	NÁ
	Fluorene	YES	YES	INA.
110009		YES	YES	
	gamma-HCH (Lindane)	YEŞ	YEŞ	
	Heptachlor	YES	YES	
1024573	Heptachlor epoxide	YES	NO	NA NA
	Hexachloro-1,3-butadiene	YES	YES	
	Hexachlorobenzene	YES	YES	
	Hexachlorocyclopentadiene	YES	YES	
	Hexachloroethane	YES	YES	
	Hexane	YES	YES	
	Hydrogen cyanide Indeno(1,2,3-cd)pyrene	YES NO	YES NO	NA NA
	Isobutanol	YES .	YES	NA —
	Isophorone	YES	NO NO	NA NA
	Mercury (elemental)	YES	YES	174.5
126987	Methacrylonitrile	YES	YES	
	Methoxychlor	YES	YES	
79209	Methyl acetate	YES	YES	
	Methyl acrylate	YES	YES	
74839	Methyl bromide	YES	YES	
	Methyl chloride (chloromethane)	YES	YES	
	Methylcyclohexane	YES	YES	
	Methylene bromide Methylene chloride	YES YES	YES YES	
	Methylethylketone (2-butanone)	YES	YES	
	Methylisobutylketone	YES	YES	
	Methylmethacrylate	YES	YES	
	2-Methylnaphthalene	YES	YES	— <u>-</u>
	3-Methylphenol (m-cresol)	YES	NO	NA NA
	2-Methylphenol (o-cresol)	YES	NO	NA
	4-Methylphenol (p-cresol)	YES	NO	NA
	m-Nitrololuene	YES	NO	NA
1634044		YES	YES	
	m-Xylene	YES	YES	
	Naphthalene	YES	YES	
104518	n-Butylbenzene	YES	YES	

Table 1: Question 1 Summary Sheet.

CAS No.	Chemical	Is Chemical Sufficiently Toxic? 1	Is Chemical Sufficiently Volatile? ²	Check Here if Known or Reasonably Suspected To Be Present ³
	Nitrobenzene	YES	YES	
	4-Nitrophenol	YES	NO	NA NA
	2-Nitropropane	YES	YES	
	N-Nitroso-di-n-butylamine	YES	YES	
	N-Nitrosodi-n-propylamine	YES	NO	NA NA
	N-Nitrosodiphenylamine	YES	NO NO	NA.
	n-Propylbenzene	YES	YES	
	o-Nitrotoluene	YES	YES	i e
	o-Xylene	YES	YES	i –
	p-Chloroaniline	YEŞ	NO	NA NA
	Pentachlorophenol	YES	NO	NA
108952		YES	NO	NA NA
99990	p-Nitrotoluene	YES	NO	NA.
	p-Xylene	YES	YES	
129000	Pyrene	YES	YES	i -
	Pyridine	YES	NO	NA NA
135988	sec-Butylbenzene	YES	YEŞ	
100425	Styrene	YES	YES	
98066	tert-Butylbenzene	YES	YES	
630206	1,1,1,2-Tetrachloroethane	YES	YES	
79345	1,1,2,2-Tetrachloroethane	YES	YES	
127184	Tetrachloroethylene	YES	YES	
	Toluene	YEŞ	YES	
8001352	Toxaphene	YES	NO	NA
	trans-1,2-Dichloroethylene	YES	YES	
76131	1,1,2-Trichloro-1,2,2-trifluoroethane	YES	YES	
120821	1,2,4-Trichlorobenzene	YES	YES	
79005	1,1,2-Trichloroethane	YES	YES	
71556	1,1,1-Trichloroethane	YES	YES	
	Trichloroethylene	YES	YES	
	Trichlorofluoromethane	YES	YES	
	2,4,5-Trichlorophenol	YES	NO	NA
	2,4,6-Trichlorophenol	YES	NO	NA
	1,2,3-Trichloropropane	YES	YES	
	1,2,4-Trimelhylbenzene	YES	YES	
	1,3,5-Trimethylbenzene	YES	YES	
	Vinyl acetate	YE\$	YES	
75014	Vinyl chloride (chloroethene)	YES	YES	

¹ A chemical is considered sufficiently toxic if the vapor concentration of the pure component (see Appendix D) poses an incremental lifetime cancer risk greater than 10⁻⁶ or a non-cancer hazard index greater than 1.

² A chemical is considered sufficiently volatile if its Henry's Law Constant is 1 x 10⁻⁵ atm-m³/mol or greater (US EPA, 1991).

³ Users should check off compounds that meet the criteria for toxicity <u>and</u> volatility and are known or reasonably suspected to be present.

Table 2a: Question 4 Generic Screening Levels and Summary Sheet 1 Risk \approx 1 x 10^4

			Basis of Target Concentration C=cancer risk	Target Inde Concentration Both the Prese Level and the Ta Inde [R=10 ⁻¹ , F	Lo Setiefy ribed Risk rget Hazard (il=1)	Measured or Reasonably Estimated Indoor Air Concontration [if available]	Target Shallow Concentration Co to Target Inc Concentration WI Gas to Indoor Air Factor=I	rresponding loor Air nore the Soil Attenuation 0.1	Measured or Reasonably Estimated Shallow Soli Gas Concentration [if available]	Target Doe Concen Correspondir Indoor Air Co Whare the S Indoor Air A Factors Comments	itration ng to Targot oncentration Solf Gas to attenuation =0,01	Measurod or Roasonably Estimated Doep Soil Gas Concontration [if available]	Target Groundwaler Concentration Corresponding in Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attonuation Factor = 0.001 and Partitioning Across the Water Table Oboys Henry's Law Cor	Measured or Reasonably Estimated Groundwater Concontration [if available]		
CAS No.	Chemical	Sources	NC=noncancor risk	(ug/m²)	(ppbv)	(apecify units)	(n2/W ₃)	(ppbv)	(epecify units)		(opbv)	(specify units)	(ug/L)	_(specify units)	l	
83329	Aconsphthene	Х _	NC	2.1E+02	3,3E+01		2.1E+03	3.3E+02		2.1E+04	3.3E+03		•-		ĺ	
75070	Acotaldehyde		NC	9.0E+00	5.0E+00		9.0E+01	5.0E+01		9.0E+02	5.0E+02		2,8E+03		ł	
	Acolono	X	NC	3.5E+02	1.5E+02	<u> </u> -	3.5E+03	1.5E+03		3.5E+04	1.5E+04		2.2E+05		i	
	Acetonitrile		NC	6.0E+01	3.6E+01	_	6.0E+02	3.6E+02		6.0E+03	3.6E+03		4.2E+04	-		
	Acetophenone	x	NC .	3,5E+02_	7.1E+01		3.5E+03	7.1E+02		3.5E+04	7.1E+03		8.0E+05			
	Acroloin		NC	2.0E-02	8.7E-03		2.0E-01	8.7E-02		2.0E+00	8.7E-01	 	4.0E+00			
	Acrylonitrile		NC NC	2.0E+00	8.2E-01	<u> </u>	2.0E+01	9 <u>.2E+00</u>		2.0E+02	9.2E+01		4,7E+02			
309002		1	c	_5.0E-02	3.3E-03	<u> </u>	5.0E-01	3.3E-02	_	5.0E±00	3.3E-01		7 <u>,1É+</u> 00		1	
	eloha-HCH (alpha-BHC)			1.4E-01	1.1E-02		1.4E+00_	1.1E-01		1.4E+01	1.1E+00		3.1E+02		1	₩
	Bonzaldehyde	x	NC_	3.5E+02	8.1E+01	-	3.5 <u>E+</u> 03	B_1E+02		3,5E+04	8.1E+03		3.6E+05	12-7	109/1_	- highest
	Вспиель		c	_3.1E+01	9.8E±00		3.1E+02	9.8E+01	<u> </u>	3.1E+03	9.8E+02		1.4E+02	1314	,	CONC.
	Banzo(b)fluorenthena	х	С	1.2E+00	1.1E-01		-	<u> </u>				 			l	C = 1,
	Benzyichloride	_×	<u> </u>	5.0E+00	9.7E-01	<u> </u>	5.0E+01	9.7E+00		5,0E+02	9.7E+01		3.0E+02		1	
91587	bote-Chloronaphthaiene	_ x	NC	_2.8E+02	4.2E+01		2.8E+03	4.2E+02		2.8E+04	4.2E+03				l	
	Biphenyl	X	NC	1,8E+02	2.8E+01	<u> </u>	1.8E+03	2.8E+02		1.8E±04	2.8E+03		**		l	
111444	Bis(2-chloroethyl)ether		с	7.4E-01	1.3E-01		7.4E+00	1.3E+00		7.4E+01_	1.3E+01		1_0E+03		l	
108601	Bis(2-chloroisopropyl)other	 	<u> </u>	2.4E+01	3.5E+00	<u> </u>	2.4E+02	3.5E+01	<u></u> _	2.4E+03	3.5E+02		5.1E+03		4	
542881	Bis(chloromethyl)ethor	<u> </u>	c	3.9E-03	8.4E-04		3.9E-02	8.4E-03		3.9E-01	0.4E-02		4.5E-01			
75274	Bromodichloromothana			1.4E+01	2.1E+00		1.4E+02	2.1E+01		1.4E+03	2.1E+02		2.1E+02	 	1	
75252	Bromoform	<u> </u>		2.2E+02	2.1E+01		2.2E+03	2.1E+02		2.2E+04	2.1E+03		8.3E-01			
106990	1,3-Butadiona		С _	8.7E-01	3.9E-01		8.7E±00	3.9E+00		8.7E+01	3.9E+01		2.9E-01		l	
75150	Carbon disulfide		NC	7.0E+02	2.2E+02	<u> </u>	7.0E+03	2.2E+03		7.0E+04	2.2E+04		5.6E+02		1	
56235	Carbon Letrachloride		c	1.6E+01	2.6E+00		1.6E+02	2.6E+01	_	1.6E+03	2.6E+02	ļ	1.3E+01			
57749	Chlordana	_	NC NC	7.0E-01	4.2E-02		7.0E+00	4_2E_01		7.0E+01	4_2E+00					
126998	2-Chloro-1,3-butadiana (chloroprana)	<u> </u>	NC NC	7.0E+00	1.92+00		7.0E+01	1.9E+01		7.0E+02	1,9E+02		1 <u>.4</u> E+01			
108907	Chlorobenzano	<u> </u>	NC	6.0E+01	1.3E+01	_	6.0E+02	1.3E+02		6.0E+03	1.3E+03		3.9E+02			
109693	1-Chiorobutano	x	NC	1.4E+03	3.7E+02	<u> </u>	1.4E+04	3.7E+03		1.4E+05	3.7E+04	<u> </u>	2 <u>.0</u> E+03		1	
124481	Chlorodibromomethene	х	С	1.0E+01	1.2E+00	<u> </u>	1.0E+02	1.2E+01		1.0E+03	1.2E+02		3.2E+02			
75456	Chlorodifluoromethane		NC_	5.0E+04	1.4E+04		5.0E+05	1.4E+05								
75003	Chloroethane (elhyl chloride)		NC_	1.0E+04	3.8E+03		1,0E+05	3.8E+04		1.0E+06	3.8E+05		2 <u>8E+04</u>	9,17	19/4	
67663	Chloroform	<u> </u>	c	1.1E+01	2.2E+00		1.1E+02	2.2E+01		1.1E+03	2.2E+02		8.0E+01 [†]			
95578	2-Chlorophenot	×	NC	1.8E+01	3.35+00		1.8E+02	3.3E+01	ļ	1.8E+03	3.3E+02		1 <u>.1E</u> +03		1	
75296	2-Chloropropano	<u> </u>	NC	_1.0E+02	3.2E+01		1.0E+03	3_2E+02		1.0E+04	3.2E+03	<u> </u>	1.7E+02	<u> </u>	1	
218019	Chrysena	×	· -	 	<u> </u>		<u> </u>	<u> </u>			<u></u>				1	
156592	cis-1,2-Dichloroothylene	x	NC	3.5E±01	8.8E+00		3.5E+02	8.8E+01		3.5E+03	8.8E+02		z.1E+02			
123739	Crotonaldehyde (2-butenal)	x	c	4.5E-01	1.6E-01		4.5E+00	1.6E+00		4.5E+01	1.6E±01		5,5E+02		1	
96828	Cumano		NC	4.0E+02	8.1E+01		4.0E+03	8.1E+02		4.0E+04	8.1E+03		8.4E+00		1	

* The highest concentration is noted for wells MW-15, 5-3 and 45.

Table 2a: Question 4 Generic Screening Levels and Summary Sheet ¹ Risk = 1 x 10⁻⁴

			Besis of Targot Concentration C=cancer risk NC-noncancer risk	Targel Indoor Air Concentration to Salisty Both the Prescribed Rick Lovel and the Targel Hazard Indox [R=10-4, Hi=1) Coupsel		Indoor Air Concentration [if available]	Target Shallow Soll Gas Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor=0.1 Cmd-gas		Moasured or Reasonably Estimated Shallow Soil Gas Concontration [if available]	Target Deep Soil Gas Concontration Corresponding to Target Indoor Air Concontration Where the Soil Gas to Indoor Air Attenuation Factor=0.01 Conspan		Measured or Reasonably Estimeted Doop Soll Gas Concentration [if availablo]	0.001 and Partitioning Across the Water Table Obeya Henry's Law C _{ge}	Measured or Reasenably Estimated Groundwater Concentration [if available]	
CAS No.	Chemical	Sources		(//p/m³)	(ppbv)	(specify units)	(Ug/m³)	(pphv)	(specify units)	(ug/m³)	(ppbv)	(specify units)	(ug/L)	(specify units)	
72559 DI	· · · · · · · · · · · · · · · · · · ·	x	<u>_c</u>	2,5E+00	1.9E-01	 -	2.5E+01	1.9E+00							l
	benzofuran	x	NC	1.4E+01	2.0E+00_	_	1.4E+02	2.0E+01	 	1.4E+03	2.0E+02	-			l
	2-Dibromo-3-chloroprogane		NC	2.0E-01	2.1E-02	 	2.0E+00	2.1E-01		2,0E+01	2.1E+00		3.3E+01		ĺ
	2-Dibromoothane (ethylene dibromide)		NC	2.0E-01	2,6E-02		2.0E+00	2.6E-01		2.0E+01	2.62+00			-	l
	3-Dichlorobenzena	X	NC NC	1.1E+02	1.7E+01		1.1E+03_	1.7E+02		1.1E+04	1.7E+03		8.3E+02		l
	2-Dichlorobenzena		NC NC	2.0E+0Z	3,3E+01	_	2.0E+03	3.3E+02		2.0E+04	3.3E+03		2.6£+03	6.1	09
	4-Dichlorobenzana	<u> </u>	NC NC	8.0E+02	1.3E+02	 	8.0E+03	1.3E+03		8.0E+04	1.3E+04		8.2E+03	ا ب	V
	chlorodifluoromotheno		NC	2.0E+02	4.0E+01_		2,0E+03	4.0E+02	 	2.0E+04	4.0E+03				ĺ
	1-Dichloroethano	-	NC	5.0E+02	1.2E+02	 	5.0E+03	_1.2E+03	 	5.0E+04	1.2E+04	-	2.2E+03		l
	2-Dichloroethang		с	9.4E+00	2.3E+00_	-	9.4E+01	2.3E+01		9.4E+02	2.3E+02	 -	2.3E+02	 -	l
	1-Dichioraathylena	 i	NC NC	2.0E+02	5.0E+01	 	2.0E+03	5.0E+02	 	2.0E+04	5.0E+03		1.8E+02	 	ĺ
	2-Dichloropropane		NC	4.0E+00	8.7E-01	_	4.0E+01	8.7E+00	 	4.0E+02	8.7E+01	 	3.5E+01		İ
	3-Dichloropropene		NC_	2.0E+01	4.4E+00		2.0E+02	4.4E+01	 	2.0E+03	4.4E+02	 -	2.8E+01	 	ĺ
60571 D			с	5.3E-02	3.4E-03	 	5.3E-01	3.4E-02	 	5.3E+00_	3.4E-01	 -	8.6E+01		1
115297 E		x	NC	2.1E+01	1.3E+00	 	2.1E+02	1.3E+01	 			 			i
	pichlorohydrin		NC	1.0E+00	2.6E-01	 -	1.0E+01	2.6E+00	<u> </u>	1.0E+02	2.6E+01		8.0E+02		i
	thyl ather	x	NC	7.0E+02_	2.3E+02	<u> </u>	7.0E+03	2.3E+03	 	7.0E+04	2,3E+04	 	5.2E+02	 	i
	thylacolato	×	NC NC	3.2E+03	8.7E+02	<u> </u>	3.2E+04	8.7E+03	<u> </u>	3.2E±05	8.7E+04	 -	5.6E±0.5	 -	i
	thylbenzene		. с	2.2E+02	5.1E+01		2.2E+03	5.1E+02	 	2.2E+04	5.1E+03	 -	7.0E+02 ¹		l
	thylene oxide	 	c	2.4E+00	1.4E+00_	-	2.4E+01	1.4E+01	 -	2.4E+02	1.4E+02		1,1E+02	-	İ
97632 E	lhylmothscrylato	×	NC	3.2E+02	6.8E+01	 -	3.2E+03	6.8E+02	<u> </u>	3.2E+04	6.8E+03	 _	9.1E+03	 -	İ
86737 FI		X	NC_	1,4E+02	2.1E+01		1.4E+03	2.1E+02	├ ──	"			- "	├ ──	İ
110009 F		x	NC NC	3.5E+00	1.3E+00	 	3.5E+01	1.3E+01		3.5E+02	1.3E+02		1.6E+01		ı
58899 g	amme-HCH (Lindane)	X	<u> </u>	_6.6E-01	5.5E-02		6.6E+00	_5.5E-01	 -	6.6E+01	5.5E+00		1.1E+03	 -	l
	eplachlor		C	1.9E-01	1.2E-02		1.9E+00	1.2E-01	<u> </u>	1.9E+01	1.2E+00		4.0E-01 1	 	ĺ
	exachloro-1,3-butadione		<u> </u>	1.1E+01	1.0E+00	-	1.1E+02	1.0E+01	 	1.1E+03	1_0E+02	 -	3.3E+01	 -	i
118741 H	exachlorobenzone		<u> </u>	5.3E-01	4.5E-02	├	5.3E+00	4.5E-01		5.3E+01	4.5 <u>E+00</u>		<u> </u>		i
	exachiorocyclopeniadiene		NC NC	2.0E-01	1.8E-02		2.0E+00	1.8E-01	<u> </u>	2.0E+01	1.9E+00		5.0E+01 [†]	ļ	i
	oxachloroothano			6.1E+01	6.3E+00		6.1E+02	6.3E+01		6.1E+03	6.3E+02		3.8E+02		
110543 H	oxane	}	NC	2.0E+02	5.7E+01	ļ. <u>. </u>	2.0E+03	5.7E+02		2.0E+04	5.7E+03		2,9E+00		i
	ydrogen cyanido	 	NC	3.0E+00	2.7E+00	 	3.0E+01	2.7E+01	<u> </u>	3.0E+02	2.7E+02	 	5,5E+02	ļ	
	obutan <u>oi</u>	Х	ŅC	1.1E+03	3.5E+02	-	1.1E+04	3.5E+03	<u> </u>	1.1E+05	3.5E+04		2.2E+06	 	ı
	orcury (elomental)		NC	3.0E-01	3.7E-02	<u> </u>	3.0E+00	3.7E-01	 _	3.0E+01	3.7E+00		6.8E-01		i
	ethacry/enitrile	ļ	NC	7.0E-01	2.6E-01	 	7.0E+00	2.8E+00	 	7.0E+01	2.6E+01	ļ	6.9E+01		ĺ
72435 M	ethoxychlor	_ x _	NC_	1.6E+01	1.2E+00_	 			├ ──	<u> </u>	<u> </u>		•-		
	athyl ecoleto	<u>x</u> .	NC	3.5E+03	1.2E+03		3.5E+04	1.2E+04	<u> </u>	3.5E+05	1,2E+05		7.2E+05	ļ	ı
96333 M	othyl a <u>crylaie</u>	x	NC	1,1E+02	3.0E+01		1.1E+03	3.0E+02	<u> </u>	1.1E+04	3.0E+03	<u></u>	1.4E+04	i	į

DRAFT

Table 2 a November 20, 2002

Table 2a: Question 4 Generic Screening Levels and Summary Sheet 1 Risk = 1 \times 10 4

Risk = 1 x 1														
CAS No.	Chemical	Compounds with Provisional Toxicity Data Extrapolated From Oral Sources	Basis of Targol Concontration C=cancor risk NC=noncancor risk	Curps		Measured or Reasonably Ealimated Indoor Air Concentration (if available)	Target Shallow Concontration Co to Target Ind Concontration W Gas to Indoor Air Factor= Cmot-pa (ug/m³)	rresponding soor Air nere the Soil Attenuation 0.1	Measured or Reasonably Esilmated Shallow Soil Gas Concentration [if available] (specify units)	Targot Deop Soil Gas Concontration Comsponding to Targot Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor=0.01 Cotton (ug/m) (ppbv)		Moasured or Reasonably Estimated Doop Soil Gas Concentration [if available] (specify units)	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor = 0.001 and Partitioning Across the Water Table Obeys Honry's Law Cov (ug/L)	Measured or Reasonably Estimated Groundwater Concentration (if available) (specify units)
	Methyl bromide	3001003	NC	5.0E+00	(ppbv) 1.3E+00	(apociny drina)	5.0E+01	1.3E+01	(appoint armany	5.0E+02	(ppbv) 1.3E+02	(apcoly disay)	2,0E+01	10,000,000,000
	Mothyl chloride (chloromethane)		NC NC	9.0E+01	4,4E+01		9.0E+02	4.4E+02		9.0E+03	4.4E+03		2,5E+02	
	Mothylcyclohexane	-	NC NC	3.0E+03	7.5E+02		3.0E+04	7.5E+03		3.0E+05	7.5E+04		7,1E+02	i
	Methylena bromide	×	NC NC	3,5E+01	4.9E+00		3,5E+02	4.9E+01	_	3.5E+03	4.9E+02		9.9E+02	
	Methylene chloride		C	5.2E+02	1.5E+02		5.2E+03	1,5E+03	- -	5.2E+04	1.5E+04		5,8E+03	_
	Methylethylkolone (2-butanone)		NC NC	1.0E+03	3.4E+02	_	1.0E+04	3,4E+03		1.0E+05	3.4E+04		4,4E+05	
	Methylisobutylketone	_	NC NC	8.0E+01	2.0€+01		8.0E+02	2.0E+02	-	8.0E+03	2.0E+03		1,4E+04	
	Mothylmothacrylate		NC NC	7.0E+02	1.7E+02		7.0E+03	1.7E+03		7.0E+04	1.7E+04		5.1E+04	- -
	2-Methylnaphthaleno	×	NC NC	7.0E+01	1.2E+01	_	7.0E+02	1.2E+02	· · · · · ·	7.0E+03	1.2E+03		3,3E+03	
1634044		<u> </u>	NC NC	3.0E+03	8.3E+02		3.0E+04	8.3E+03		3.0E+05	8.3E+04		1.2E+05	
	m-Xylene	×	NC NC	7.0E+03	1.6E+03		7.0E+04	1.6E+04		7.0E+05	1.6E+05		2,3E+04	
	Naphthalono	^-	NC NC	3.0E+00	5,7E-01		3.0E+01	5.7E+00		3.0E+02	5.7E+01	 	1.5E+02	
	n-Butyibenzone	x	NC NC	1.4E+02	2.6E+01		1.4E+03	2.6E+02		1.48+04	2.6E+03		2,6E+02	
	Nilrobenzene	1	NC NC	2.0E+00	4.0E-01		2.0E+01	4.0E+00	 -	2.0E+02	4.0E+01		2,0E+03	
	2-Nitropropano	<u> </u>	c	9.0E-02	2.5E-02	-	9.0E-01	2.5E-01		9.0E+00	2.5E+00		1,8E+01	
	N-Nitroso-di-n-butylamino		c	1.5E-01	2.4E-02	-	1.5E+00	2.4E-01		1.5E+01	2.4E+00		1.2E+01	
	n-Propylbenzene	x	NC NC	1.4E+02	2.8E+01	-	1.4E+03	2.8E+02		1.4E+04	2.8E+03		3.2E+02	
	o-Nitrololuena	x	NC NC	3.5E+01	6.2E+00	ļ	3.5E+02	6.2E+01		3.5E+03	6.2E+02		6,8E+04	
	o-Xylona	x	NC NC	7.0E+03	1,62+03		7.0E+04	1.8E+04		1	1.6E+05		3,3E+fl4	
	p-Xylone	x	NC NC	7.0E+03	1.6E+03	_		1.6E+04		7.0E+05	-	 -		
129000		î x	NC NC	1.1E+02	1.3E+01	_	7.0E+04	1,85+04	 	7.0E+05	1.5E+05		2,2E+04	
	soc-Butylbenzone	×	NC NC	1.4E+02	2.6E+01	_	1.4E+03	2.6E+02	<u> </u>		2.6E+03			-
_	Styrena	·	NC NC	1.0E+03	2.3E+02	- -	1.0E+04	2.3E+03	 	1.4E+04	2.3E+04	 	2,5E+02	
	tert-Butylbonzone	×	NC NC	1.4E+02	2.5E+01	<u>-</u>	1.4E+03	2.5E+02		1.0E+05 1.4E+04	2.5E+03		8.8E+03 2.9E+02	
	1,1,1,2-Tetrachioroothane	 ^-	- °C	3.3E+01	4.8E+00		3.3E+02	4.8E+01	 -	3.3E+03	4.8E+02	 	2,9E+02 3,3E+02	
	1,1,2,2-Tetrachloroethane		<u>c</u>	4.2E+00	6.1E-01		4.2E+01	6.1E+00	_	4.2E+02	6.1E+01			-
	Tetrach loroethylono	 	- c	8.1E+01	1.2E+01	-	8.1E+02	1.2E+02			\vdash		3.0E+02	
	Toluene	·	NC NC	4.0E+02	1.1E+02	 	4.0E+03	1.1E+03		8.1E+03 4.0E+04	1.2E+03		1.1E+02 1.5E+03	12
	trans-1,2-Dichlercethylene	х	NC NC	7.0E+01	1.1E+02		7.0E+02	1.8E+02			1.8E+03			, <u>, , , , , , , , , , , , , , , , , , </u>
	1,1,2-Trichloro-1,2,2-trifluoroethano	 ^ 	NC NC	3.0E+04	3,9E+03		3.0E+05	3.9E+04	 	7.0E+03	3.9E+05		1.8E+02	<u></u>
	1,2,4-Trichlorobonzene	 	NC NC	2.0E+02	2.7E+01		2.0E+03	2.7E+02	_	3.0E+06	2.7E+03		1,5E+03	
	1,1,2-Trichloroethane		<u>NC</u>	1.5E+01	2.7E+01	 	1.5E+02	2.7E+02 2.8E+01	 	2.0E+04	 	 -	3,4E+03	
	1,1,1-Trichioroothane	+-	NC NC		4.0E+02	 		4.0E+03		1.5E+03	2.8E+02	 	4.1E+02	
	Trichloroethyleno ††	×	C	2.2E+00	4.1E-01	 -	2.2E+04	 - -	 -	2.2E+05	4.0E+04		3.1E+03	
_	Trichiorofluoromethane	 ^				-	2.2E+01	4.1E+00	 -	2.2E+02	4.1E+01	 -	5.3E+00	 -
			NC NC	7.0E+02	1.2E+02		7.0E+03	1.2E+03	 -	7.0E+04	1.2E+04	 	1 <u>.8E+02</u>	
1	1,2,3-Trichloropropane	 	NC	4.9E+00	8,1E-01	-	4.9E+01	8.1E+00	} -	4.9E+02	8.1E+01	 	2.9E+02	
<u>95636</u>	1,2,4-Trimelhylbonzono	1	NC	6.0E+00	1_2E+00	<u> </u>	5.0E+01	1_2E+01		6.0E+02	1.2E+02	<u> </u>	2,4E+01	

병/드

Table 2a: Question 4 Generic Screening Levels and Summary Shoet 1

Risk = 1 x 10⁻¹

CAS No.	Chemical	Compounds with Provisional Toxicity Data Extrapolated From Oral Sources	Boole of Tomol	Target Indo Concontration : Both the Prescr Lovel and the Tai Indox [R=10". H Clarget (ug/m³)	to Satisfy jbed Risk rgel Hazard : ii=1)	Reasonably Estimated	Target Shallow Concantration Co to Target Int Concantration W Gas to Indoor Air Factor** Contage Geology (Ug/m³)	rrosponding loor Air nore the Soli Atlenuation 0.1		Targot Deo Concon Correspondie Indoor Air Co Where the Indoor Air A Factor C _{tot} (ug/m³)	tration ng to Terget oncontration Soil Gas to Utenuation =0.01	Moasured or	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Altenuation Factor to 0.001 and Partitioning Across the Water Table Obeys Honry's Law Core (upt.)	Measured or Reasonably Estimated Groundwater Concentration [if available] (specify units)
	1,3,5-Trimpthy/bonzene		NC	6.0E+00	1.2E+00	(a)pounty annualy	6.0E+01	1.2E+01	Topouri, armer,	6.0E+02	1.2E+02	(3)5321, 41,5-47	2.5E+01	[55027 2
	Vinyl scelato		NC NC	2.0E+02	5.7E+01		2,0E+03	5.7E+02		2.0E+04	5.7E+03		9.6E+03	
75014	Vinyl chlorida (chloroethene)		C	2.8E+01	1.1E+01		2.8E+02	1.1E+02		2.8E+03_	1.1E+03		2.5E+01	

[|] AF = 0.16 of Shakow Soil Gas Target Concentration |
AF = 0.01 for Deep Soil Gas Target Concentration |
AF = 0.001 for Groundwater Target Concentration |
AF = 0.001 for Groundwater Target Concentration |
AF = 0.001 for Groundwater Target Concentration |
Theath-based target breathing concentration exceeds maximum possible chemical vapor concentration (pathway incomplete) |
Target soil gas concentration exceeds maximum possible vapor concentration (pathway incomplete)

[†] The larget groundwater concentration is the MCL. (The MCL for chloroform is the MCL for total Trihatomethanes. The MCL listed for m-Xylene, o-Xylene, o-Xylene, is the MCL for total Xylenes.)

The target concentration for trichloroethylone is based on the upper bound cancer stope factor identified in EPA's draft risk assessment for trichloroethylone (US EPA, 2001). The stope factor is based on state-of-line-art methodology, however the TCE assessment is still undergoing review. As a result, the stope factor and the target concentration values for TCE may be revised further. (See Appendix D.)

Table 2b: Question 4 Generic Screening Levels and Summary Sheet ¹

CAS No.	Chemical	Compounds with Provisional Toxicity Data Extrapolated From Oral Sources	Basis of Target Concontration C=cancor risk NC=rioncancer risk	Target Indo Concontration Both the Presce Lovel and the Tai Index [R=10°5, H Charget	lo Satiefy ibod Risk got Hazard I=1)	Measured or Reasonably Estimated Indoor Air Concentration [if avaitable] (specify units)	Tergot Shallow Concentration Co to Tergot Ind Concentration Wi Gas to Indoor Air Factor=(C ₂₀₀₋₂₀ (ug/m3)	mosponding loor Air nore the Soil Attenuetion 0.1	Estimated	Target Deep Concern Correspondir Indoor Air Co Where the S Indoor Air A Factorn C _{res} (ug/m3)	Iration Ig to Targot Incontration Isoil Gas to Itlonuation IO,01	Moasured or Roasonably Estimated Deep Soil Gas Concontration (if available) (specify units)	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Allenuation Factor = 0.001 and Partitioning Across the Water Table Obeys Henry's Law Cope (ug/L)	Measured or Reasonably Estimated Groundwater Concentration [if available] (specify units)	
	tinaphthene	x	NC	2.1E+02	3.3E+01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.1E+03	3.3E+02		2.1E+04	3.3E+03				
	cetaidohyde		NC	9.02+00	5.0E+00		9.0E+01	5.0E+01		9.0E+02	5.0E+02		2_8E+03_		
67641 Ac	cotono	х	NC	3.5E+02	1.5E+02		3,5E+03	1.5E+03		3.5E+04	1.5E+04		2.2E+05		
75058 Ac	setonitrila		NC NC	6.0E+01	3.6E+01		6.0E+02	3.6E+02		6.0E±03	3.6E+03	_	4 <u>.2E+04</u>		
	catophenona	х	NC	_ 3.5E+02	7.1E+01		3.5E+03	7.1E+02		3.5E+04	7.1E+03		8.0E+05		
107028 Ac			NC	2.0E-02	8.7E-03		2.0E-01	8.7E-02		2.0E+00	8.7E-01		4.0E+00		
107131 A	zylonitrile		с	3.6E-01	1.7E-01		3.6E+00	1.7E+00		3.6E+01	1.7E+01		8.5E+01		
309002 AJ	drin		С	5,0E-03	3.3E-04		5.0E-02	3.3E-03		5.0E-01	3.3E-02		7.1E-01		
319846 el	pha-HCH (alpha-BHC)		С	1.4E-02	1.1E_03		1.4E-01	1.1E-02		1.4E+00	1.1E-01		3.1E+01]
100527 B	enzaldehydo	_ х	NC	3.5E+02	8.1E+01		3.5E+03	8.1E+02		3.5E+04	8.1E+03		3.6E+05		49 /1
71432 B	enzone		С	3.1E+00	9.8E-01		3.1E+01	9.8E+00		3.1E+02	9.8E+01	_	1.4E+01	(3,7	יזכיין
205992 Be	enzo(b)Ruoranthone	×		1.2E-01	1.1E-02		1.2E+00	1.1E-01		••	••				ĺ
100447 Bo	nzyschloride	x	_ c	5.0E-01	9.7E-02	}	5.0E+00	9.7E-01		5.0E+01	9.7E+00]	3.0E+01		}
91587 bo	ota-Chioronaphihaiene	x	NC	2.8E+02	4,2E+01		2.8E+03	4.2E+02		2.8E+04	4.2E+03		-,		
92524 Bi	iphonys	х	NC	1.8E+02	2.8E+01		1.8E+03	2.8E+02		1.8E+04	2.8E+03				
111444 B	s(2-chloroethyt)ether		С	7.4E-02	1.3E-02		7.4E-01	1.3E-01		7.4E+00	1.3E+00		1.0E+02		1
108601 B	s(2-chlorolsopropyl)ather		c	2.4E+00	3.5E-01		2.4E+01	3.5E+00	<u></u>	2.4E+02	3.5E+01		5.1E+02		
542681 B	s(chloromothyl)ether		с	3.0E-04	8.4E-05		3.9E-03	8.4E-04	<u> </u>	3.9E-02	8.4E-03		4.5E-02		
75274 B	romodichlaromethane	x	С	1.4E+00	2.1E-01		1.4E+01	2.1E+00	<u></u>	1.4E+02	2.1E+01		2.1E+01]
75252 8	romoform		С .	2.2E+01	2.1E+00		2.2E+02	2.1E+01		2.2E+03	2.1E+02		8.3E-02		I
106990 1,	3-Sutadione		c		3.9E-02		8.7E-01	3.9E-01		8.7E+00	3.9E+00		2.9E-02		1
75150 C	arbon disutfide		NC	7.0E+02	2.2E+02		7.0E+03	2.2E+03		7.0E+04	2.2E+04		5.6E+02	<u> </u>	}
56235 C	arbon tetrachlorida		c	1.6E+00	2.6E-01		1.6E+01	2.6E+00		1.6E+02	2.6E+01		5.0E+00 [†]		
57749 C	hiordane		С	2.4E-01	1.5 <u>E-02</u>		2.4E+00	1.5E-01		2.4E+01	1.5E+00				
126998 2-	Chloro-1,3-butadiene (chloroprene)		NC NC	7.0E+00	1.9E+00		7.0E+01	1.8E+01		7.0E+02	1.8E+02		1.4E+01		1
108907 C	hlorobenzana		NC_	6.0E+01	1.3E+01		6.0E+02	1.3E+02		6.06+03	1.3E+03		3.9E+02]
109693.1-	Chlorobutano	×	NC_	1.4E+03	3.7E+02	}	1.4E+04	3.7E+03		1.4E+05	3.7E+04		2.0E+03		}
124481 C	hlorodibromomethane	x	c	1.0E+00	1,2E-01		1,0E+01	1.2E+00	L	1.0E+02	1.2E+01		3.2E+01		
75456 C	hlorodifluoromethana		NC	5.0E+04	1.4E+04		5.0E+05	1,4E+05		•					ے. ا
75003 C	hloroethane (othyl chloride)		NC	1.0E+04	3.8E+03		1.0E+05	3.8E+04		1.0E±08	3.8E+05		2.8E+04	9.17	الاكرا
67663 C	hloroform		с	1.1E+00	2.2E-01		1.1E+01	2.2E+00		1.1E+02	2.2E+01		8,0E+01 [†]		
95578 2	Chlorophanol	x	NC	1.8E+01	3.3E+00		1.8E+02	3.3E+01		1.8E+03	3.3E+02		1.1E+03]
75296 2	Chloropropene		NC	1.0E+02	3.2E+01		1.0E+03	3.2E+02		1.0E+04	3.2E+03		1.7E+02		
218018 C	hrysone	х	С	1,2E+01	1,2E+00		•,	<u> </u>					.,		
156592 d	s-1,2-Dichloroethylono	x	NC	3.5E+01	8.8E+00		3.5E+02	8.8E+01		3.5E+03	8.8E+02		2.1E+02		İ
123739 C	rotonaldehyde (2-butenal)	х	С	4,5E-02	1.6E-02		4.5E-01	1.6E-01		4.5E+00	1.6E+00		5.6E+01		,
98828 C			NC NC	4.0E+02	8.1E+01	I	4.0E+03	8.1E+02		4.0E+04	8.1E+03		8.4E+00		Ī

* The highest concentration is noted for wells MW-15, 5-3 and 45.

Table 2b: Quastion 4 Generic Screening Levels and Summary Sheet 1 Risk = 1 x 10^5

CAS No.	Chemical	Compounds with Provisional Toxicity Deta Extrapolated From Oral Sources	Basis of Targot Concentration C=cancer risk NC=noncancer risk	Both the Proscribed Risk Filter Fil		Measured or Reasonably Ealimated Indoor Air Concentration (if available) (specify units)	Target Shallow Concentration Co to Target Ind Concentration W Gas to Indoor Air Factor Cooking (ug/m3)	rresponding loor Alf tore the Soli Attenuation 0.1	Measured or Reasonably Estimated Shallow Soil Gas Concontration [if available] (specify units)	Target Dee Concent Correspondic Indoor Air Co Where the S Indoor Air A Factor Content (ug/m3)	trationing to Target incentration Sol! Gas to thenuation =0.01	Measured or Reasonably Estimated Doop Soil Gas Concentration [if availablo] (specify units)	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Whom the Soil Gas to Indoor Air Attenuation Factor = 0.001 and Partitioning Across the Water Table Oboys Henry's Law Cope (1971-)	Measured or Reasonably Estimated Graundwater Concentration (if available) (specify units)
72559	DDE	х	С	2.5E-01	1.86-02		2.5E+00	1,9E-01		2.5E+01	1.9E+00			
132649	Dibentofuran	х	NC	1,4E+01	2.0E+00		1,4E+02	2.0E+01		1.4E+03	2.0E+02			
96128	1,2-Dibromo-3-chloropropano		NC	2.0E-01	2.1E-02		2.0E+00	2.1E-01		2.0E+01	2,1E+00		3.3E+01	
106934	1,2-Dibromoethana (elhylana dibromida)		СС	1.1E-01	1.4E-02		1.1E+00	1 <u>.4</u> E-01		1.1E+01	1 <u>.4E+00</u>		3,6E+00	
541731	1,3-Dichiorobenzene	х	NC NC	1.1E+02	1.7E+01		1.1E+03	1.7E+02	L	1.1E+04	1.7E+03		8.3E+02	
95501	1,2-Dichiorobenzone		ŅC	2.0E+02	3.3E+01		2.0E+03	3.3E+02		2,0E+04	3.3E+03		2,6E+03	
106487	1,4-Dichiorobenzene		NC	_8.0E+02	1.3E+02		8.0E+03	1,3E+03		8.0E+04	1,3E+04		8.2E+03	6.1
75718	Dichlorodifluoromethane		NC	2.0E+02	4.0E+01		2.0E+03	4.0E+02		2.0E±04	4.0E+03		1,4E+01	<u> </u>
75343	1,1-Dichloroethane		NC	_5.0E+02	1.2E±02		5.0E+03	1,2E+03		5.0E+04	1.2E+04		2.2E+03	
107062	1,2-Dichloroethane		С	9.4E-01	2.3E-01		9.4E+00	2.3E+00		9.4E+01	2.3E+01		2.3E+01	_
75354	1,1-Dichlorophylena		NC	_2.0E+02	5.0E+01		2.0E+03	5.0E+02		2.0E+04	5.0E+03	<u> </u>	1.9E+02_	
78875	1,2-Dichioropropane		NC	4.0E+00	8.7E-01	_	4.0E+01_	8.7E+00		4.0E+02	8.7E+01		3.5E+01	
542756	1,3-Dichioropropana		с	<u>6.1E+00</u>	1.3 <u>6+</u> 00		6.1E+01	1.3E+01		6.1E+02	1.3E+02		8.4E+00	
60571	Dieldrin		с	5.3E-03	3.4E-04		5.3E-02	3.4E-03		5,3E-01	3.4E-02		8,6E+00	
_ 115297	Endosulfen	x	NC	2.1E+01	1.3E+00		2.1E+02	1.3E+01	<u></u>	••	<u></u>			
106898	Epichlorohydrin		NC NC	1.0E+00	2.6E-01		1.0E+01	2.8E+00		_1.0E+02	2.6E+01		8,0E+02	
60297	Ethyl ethor	х_	NC	7.0E±02	2.3E+02	<u> </u>	7.0E+03	2.3E+03		7.0E+04	2.3E+04		5.2E±02	<u> </u>
141786	Ethylacelato	x	NC	3.2E+03	8.7E+02	<u> </u>	3.2E+04_	8.7E+03	<u> </u>	3.2E+05	8.7E+04	<u> </u>	5,6E+05	
100414	Ethylbenzons	<u> </u>	c	2.2E+01	5.1E+00		2.2E+02	5.1E+01		2.2E+03	5.1E+02	ļ	7.0E+02 [†]	
75218	Ethylene oxide		c	2.4E-01	1.4E-01		2.4E+00	1.4E+00		2.4E+01	1.4E+01		1,1E+01	
97632	Ethylmothecrylate	x	NC	3.2E+02	6.8E+01		3.2E+03	6.8E+02	<u> </u>	3.2E+04	6.8E+03		9,1E+03	
86737	Fluorane	x	NC	1.4E+02	2.1E+01		1.4E±03	2,1E+02					<u> </u>	<u></u>
110009	Furan	x	NC	3.5E+00	1.3E+00		3.5E+01	1.3E+01		3.5E+02	1.3E+02		1 <u>6E+</u> 01	
58899	gamma-HCH (Lindane)	x	с	6.6E-02	5.5E-03	ļ	6.6E-01	5.5E-02		6.6E+00	5.5E-01		1.1E+02	
76448	Heptachlor		<u> </u>	1.9E-02	1.2E-03		1.9E-01	1.2E-02		1.9E+00	1.2E-01	<u> </u>	4.0E-01 1	
87683	Hexachioro-1,3-butadiene		c	1.1E+00	1.08-01		1.1E+01	1,0E+00		1.1E+02	1.0E+01		3,3E+00	
118741	Hoxachlorobenzene		c	5.3E-02	4.5E-03		5.3E-01	4.5E-02		5.3E+00	4.5E-01		1.0E+00 [†]	
77474	Hexachlorocyclopentadione		NC	2.0E-01	1.85-02		2.0E+00	1.8E-01		2.0E+01	1.8E+00		5.0E+01 ¹	<u> </u>
67721	Hexachlorosthane		с	6.1E+00	6.3E-01		6.1E+01	6.3E+00		6,1E+02	6.3E+01		3.8E+01	
110543	Hexane		NC	2.0E+02_	5.7E+01	ļ	2.0E+03	5.7E+02		_2.0E+04	5.7E+03		2.9E+00	
74908	Hydrogen cyanida		NC_	3.0E+00	2.7E+00		3.0E+01	2.7E+01		3,0E+02	2.7E+02	<u> </u>	5,5E+02	ļ <u>.</u> .
78831	Isohutanol	х	NC_	1.1E+03	3.5E+02	<u> </u>	1.1E+04	3.5E+03	<u> </u>	1.1E+05	3.5E+04		2.2E+08_	
7439976	Morcury (elemental)		NC	3.0E-01	3.7E-02		3.0E+00	3.7E-01	<u> </u>	3.0E+01	3.7E+00		6.8E-01	
126987	Methacrylonitrile	ļ	NC NC	7.0E-01	2.6E-01		7.0E+00	2.6E+00		7.0E+01	2.6E+01	ļ	6.9E+01	
72435	Melhoxychior	х	NC_	1.8E+01	1.2E+00		-	<u> </u>			<u></u>			
79209	Methyl acetete		NC	3.5E+03	1.2E+03	<u> </u>	3.5E+04	1.2E+04		3.5E+05	12E+05		7.2E+05	
96333	Mothyl ecrylato	<u> </u>	NC	1.1E+02	3.0E+01	<u> </u>	1.1E+03	3.0E+02	<u> </u>	1.1E+04	3.0E+03	L	1.4E+04	

49/4

Table 2b: Question 4 Generic Screening Levels and Summary Sheet ¹ Risk = 1 x 10⁻⁵

R/6k = 1 x 1														
CAS No.	Chemical	Compounds with Provisional Toxicity Data Extrapolated i From Oral Sources	Basis of Target Concentration C=cancer risk NC=noncancer risk	Target Indo Concontration Both the Prosci Lovel and the Tai Index [R=10°, H Curpal (ug/m3)	lo Satisfy ibod Risk rget Hazard II=1)	Mossured or Reasonably Estimated Indoor Air Concentration [if available] (specify units)	Target Shallow Concentration Co Target Ind Concentration Wi Gas to Indoor Air Factor=(Colors (ug/m3)	rresponding loor Alr sere the Soil Attenuetion).1	Measured or Reasonably Estimated Shallow Soil Gas Concontration [if available] (specify units)	Target Dee Concern Correspondir Indoor Air Co Where the S Indoor Air A Factor Cool (ug/m3)	itration ng to Target encontration Soil Gas to kitonustion =0.01	Moasured or Reasonably Estimated Deop Soil Gas Concentration [if available] (specify units)	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor AI, Allenuation Factor = 0.001 and Partitioning Across the Water Table Obeys Henry's Law Corrections (ugl.)	Measured or Reasonably Estimated Groundwater Concentration (if available) (specify units)
74830	Methyl bromide		NC NC	5.0E+00	1.3E+00	<u></u>	5.0E+01	1.3E+01		5.0E+02	1.3E+02		2.0E+01	
74873	Methyl chloride (chloromethane)		С	2.4E+01	1.2E+01		2.4E+02	1.2E+02		2.4E+03	1.2E+03		6.7E+01	
108872	Melhylcyclohoxane		NC	3,0E+03	7.5E+02		3.0E+04	7.5E+03		3.0E+05	7.5E±04		7.1E+02	
74953	Mathylana bromida	x	NC	3.5E+01	4.9E+00	<u> </u>	3.5E+02	4.9E+01		3.5E+03	4.9E+02		9.9E+02	
75092	Methylena chloride		c	5.2E+01	1.5E+01	<u> </u>	5.2E+02	1.5E+02		5.2E+03	1.5E+03		5.8E+02	
76933	Mathylethylkologo (2-bulanone)		NC	1.0E+03	3.4E+02		1.0E+04	3.4E+03		1.0E+05	3.4E+04		4.4E+05	
108101	Malhylisobutylkalona		NC	8.0E+01	2.0E+01		8.0E+02	2.0E+02		8.0E+03	2.0E+03		1.4E+04	
80626	Methylmothacrytete		NC	7.0E+02	1.75+02	L	7.0E+03	1.7E±03		7.0E+04	1.7E+04		5.1E+04	
91576	2-Methylnaphthalono	×	NC_	7,0E+01	1.2E+01	L	7.0E+02	1.2E+02	<u> </u>	7.0E+03	1.2E+03		3,3E+03	
1534044	мтве		NC	3.0E+03	8.3E+02		3.0E+04	8.3E+03		3.0E+05	8.3E+04		1.2E+05	
108383	m-Xylone	×	NC NC	7.0E+03	1.6E+03		7.0E+04	1.6E+04		7.0E+05	1.65+05		2.3E+04	
91203	Naphthalone		_ NC	3.0E+00	5.7E-01		3.0E+01	5.7E+00		3.0E+02	5.7E+01		1.5E+02	
104518	n-Butylbenzene	х	NC	1.4E+02	2.6E+01		1.4E+03	2.6E+02		1.4E+04	2.6E+03		2,6E+02	
98953	Nitrobanzene		NC_	2.0E+00	4.0E-01		2.0E+01	4.0E+00		2.0E+02	4.0E+01		2.0E+03	
79469	2-Nitropropane		_ c	9.0E-03	2.5E-03		9.0E-02	2.5E-02		9.0E-01	2.5E-01		1.8E+00	
924163	N-Nitroso-di-n-butytamine		c	1.5E-02	2.4E-03		1.5E-01	2.4E-02		1.5E+00	2.4E-01		1_2E+00	
103851	n-Propylbenzene	x	NC NC	1.4E+02	2.8E+01		1.4E+03	2.8E+02		1.4E+04	2.8E+03		3.2E+02	
88722	o-N/trotoluena	х	NC	3.5E+01	6.2E+00		3.5E+02	6.2E+01		3.5E+03	6.2E+02		6.8E+04	
95476	o-Xylene	х	NC	7,0E+03	1.6E+03		7.0E+04	1.6E+04		7.0E+05	1.6E+05		3.3E+04	
106423	p-Xylene	x	NC	7.0E+03	1.6E+03		7.0E+04	1.6E+04		7.0E+05	1.6E+05		2.2E+04	
129000	Pytene	×	NC NC	1,1E+02	1.3E+01									
135988	sec-Butylbenzana	x	NC	1.4E+02	2.6E+01	_	1.4E+03	2.6E+02		1.4E+04	2.6E+03		2.5E+02	
	Styrene		NC	1.0E+03	2.3E+02		1.0E+04	2.3E+03		1.0E+05	2.3E+04		8.9E+03	
98066	lert-Butylbenzona	×	NC	1.4E+02	2.6E+01		1.4E+03	2.6E+02		1.4E+04	2.6E+03		2.9E+02	_
	1,1,1,2-Tetrachioroethane		С	3.3E+00	4.8E-01	_	3.3E+01	4.8E+00		3.3E+02	4.8E+01		3.3E+01	_
	1,1,2,2-Tetrachloroothana		c	4.2E-01	6.1E-02		4.2E+00	6.1E-01		4.2E+01	6.1E+00		3.0E+01	
	Tetrachloroethylena		c	8.1E+00	1.2E+00	 	8.1E+01	1.2E+01		8.1E+02	1.2E+02		1.1E+01	-
	Toluena		NC	4.0E+02	1,1E+02		4.0E+03	1.1E+03		4.0E+04	1.1E+04	· · · · ·	1.5E+03	12
		x	NC	7.0E+01	1.8E+01		7.0E+02	1.8E+02		7.0E+03	1.8E+03		1.8E+02	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1	NC	3.0E+04	3.9E+03		3.0E+05	3.9E+04		3.0E+06	3.8E+05		1.5E+03	
	1,2,4-Trichlorobonzene		NC NC	2.0E+02	2.7E+01		2.0E+03	2.7E+02	<u> </u>	2.0E+04	2.7E+03		3.4E+03	
	1,1,2-Trichloroethane	T .	С С	1.5E+00	2.8E-01	1	1,5E+01	2,8E+00		1.5E+02	2.8E+01		4.1E+01	
	1,1,1-Trichioroethane		NC	2.2E+03	4.0E+02		2.2E+04	4.0E+03		2.2E+05	4.0E+04	 -	3.1E+03	† · · - · ·
	Trichlomethylene 11	x		2.2E-01	4.1E-02		2.2E+00	4.1E-01	 -	2.2E+01	4.1E+00	 	5.0E+00 ¹	
75694		1	NC NC	7.0E+02	1.2E+02	$\overline{}$	7.0E+03	1.2E+03		7.0E+04	1.2E+04	· · · · · ·	1.8E+02	
96184			NC	4.9E+00	B.1E-01	- -	4.9E+01	8.1E+00		4.9E+02	8.1E+01		2.8E+02	
-	1,2,4-Trimethylbonzene	T	NC NC	8.0E+00	1.2E+00	 	6.0E+01	1.2E+01	 	6.0E+02	1.2E+02	-	2.8E+02 2.4E+01	
	1 - Part - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			0.01.100	1.24.00		0.05401	1.25701		1 0.UETUZ	1.45702	1	<u>4.4</u> 2701	

1016

Table 2b; Question 4 Generic Screening Levels and Summery Sheet 1

Risk = 1 x 10⁻⁵

		Compounds with Provisional Toxicity Date Extrapolated From Orel	Basis of Target Concentration Cocancor risk	Target Inde Concentration Both the Prescr Level and the Tar Index (R=10 ⁻³ , H C _{target}	to Sallefy ibed Risk get Hezard	Indoor Air Concontration [if available]	Targot Shallow Concentration Co to Targot Inc Concentration W Gas to Indoor Air Factors C _{holige}	rresponding oor Air iere the Soil Attonuation I,1	Gas Concentration [rf available]	Target Doug Concern Correspondin Indoor Air Co Where the S Indoor Air A Factors Chall	tration ig to Target incentration soil Gas to ittenuation io.01	Soil Ges Concentration [if available]	Target Groundwaler Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor = 0.001 and Partitioning Across the Water Table Obeys Henry's Low Corr	Measurod or Rossonably Estimated Groundwater Concontration [if available]
CAS No.	Chemicai	Sources	NC=noncancor risk	(ug/m3)	(pobv)	(specify units)	(ug/ <u>m</u> 3)	(ppbv)	(specify units)	(ug/m3)	(pphv)	(specify units)	(ug/L)	(specify units)
108678	1,3,5-Trimethythenzene		NC	_6.0E+00	1.2E±00		6.0E+01	1.2E+01		6.0E+02	1.2E+02	_	2,5E+01	
108054	Vinyl acotate		NC	2.0E+02	5.7E+01		2.0E+03	5.7E+02		2.0E+04	5.7E+03		9.6E+03	
75014	Vinyl chloride (chloropthene)		с	2.8E+00	1.1E±00		2.8E+01	1.1E+01		2.8E+02	1.1E+02		2 <u>.</u> 5E+00	

AF = 0.10 for Shallow Soil Gas Targot Concentration

AF = 0.001 for Deep Soil Gas Targot Concentration

AF = 0.001 for Groundwater Targot Concentration

AF = 0.001 for Groundwater Targot Concentration

The latth-based targot breathing concentration exceeds maximum possible chemical vapor concentration (pathway incomplete)

"Targot soil gas concentration exceeds maximum possible vapor concentration (pathway incomplete)

The larged groundwater concentration is the MCL. (The MCL for chloroform is the MCL for ideal Trihalomethanes, The MCL listed for m-Xylene, e-Xylene, and p-Xylene is the MCL for ideal Xylenes.)

^{##} The barget concentration for trichloroethylone is based on the upper bound cancer slope (actor slope (actor slope) (actor slo

Table 2c: Question 4 Generic Screening Levels and Summary Sheet 1

		Compounds with Provisional Toxicity Data Extrapolated From Oral	Basis of Targel Concontration C=cancor risk	Target Indo Concontration Both the Presc Level and the Ta Index [R=10 ⁻⁶ , F	lo Satisfy ribed Risk rgot Hazard II=1)	Monsured or Roasonably Estimated Indoor Air Concentration [if available]	Targol Shall Concentration Co to Targot Ind Concentration W Gas to Indoor Air Factors: C _{nobes}	rrosponding loor Air nore the Soil Attenuation 0.1	Estimated Shallow Soil Gas Concontration [if available]	Target Dee Concen Correspondis Indoor Air Co Where the S Indoor Air A Factor Cont	Imition ing to Target oncontration Soil Gas to attonuation =0.01	Measured or Reasonably Estimeted Deep Soil Gas Concentration (if available)	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Altenuation Factor = 0.001 and Partitioning Across the Water Table Obeys Henry's Lew C _{ce}	Measured or Roasonably Estimated Groundwater Concontration [if available]	
CAS No.	Chemical	Sources	NC=noncencor risk	(ug/m3)	(ppbv)	(specify units)	(ug/m3)	(ppbv)	(specify units)		(ppbv)	(specify units)	(ug/L)	[epecify units)	1
83329	Aconaphthono	X	NC	2.1E+02	3.3E+01		2.1E+03	3.3E+02		2.1E+04	3,3E+03				1
75070	Acataldehyde		c	1.1E+00	6.1E-01		1.1E+01	6.1E+00		1.1E+02	6.1E+01		3.4E+02	_	1.
67641	Acotono	X	NC	3.5E+02	1.5E+02		3.5E+03	1.5E+03		3.5E+04	1.5E+04		2.2E+05		1
75058	Acutonitrile		NC NC	6.0E+01	3.6E+01		6.0E+02	3.6E+02		6.0E+03	3,6E+03		4.2E+04		
98862	Acotophenona	х	NC	3.5E+02	7.1E+01		3.5E+03	7.1E+02		3.5E+04	7.1E+03		8_0E+05		1
107028	Acrolein	_	NC.	2.0E-02	8.7E-03		2.0E-01	8.7E-02		2.0E+00	8.7E-01		4.0E+00		
107131	Acrylonitriio		c	3.6E-02	1.7E-02		3,6E-01	1.7E-01		_3.6E+00	1.7E+00		8.5E+00		4
309002	Aldrin		с	5.0E-04	3.3E-05		5.0E-03	3.3E-04	 -	5.0E-02	3 <u>.</u> 3E-03	_	7.1E-02		1
319846	alpha-HCH (alpha-BHC)	ļ	c	1.4E-03	1.1E-04		1.4E-02	1.1E-03		1.4E-01	1.1E-02		3.1E+00		. <u>w</u> .
100527	Bonzaldehyde	x	NC	3.5E+02	8.1E+01		3.5E+03	8.1E+02		3.5E+04	6.1E+03		3,6E+05		10071 - 15-200
71432	Benzene		_ c	3.1E-01	9.8E-02		3.1E±00	9.82-01		3.1E+01	9.8E±00		5,0E+00 [†]	13.7	ug/L - 15-cro
205992	Benzo(b)fluoranthono	х	с	1.2E-02	1.1E <u>-</u> 03		1.2E-01	1.1E-02		1.2E+00	1.1E-01		"	,	3
100447	Banzyichleride	×	СС	5,0E-02	9.7E-03	<u> </u>	5.0E-01	9.7E-02		5.0E+00	9.7E-01		3.0E+00	<u></u>	C-2
91587	bota-Chloronaphthalene	x	NC	2.8E+02	4.2E+01		2.BE+03	4_2E+02		2,8E+04	4.2E+03] 3.1 69/2 - 5-5
92524	Siphonyl	x	NC	1.8E+02	2.8E+01		1.8E+03	2.8E+02		1.8E+04	2,8E+03		••		upassalic
111444	Bis{2-chloroathyl}othar		c	7.4E-03	1,3E-03		7.4E-02	1.3E-02		7.4E-01	1.3E-01		1.0E+01		3.1 us/L - 5-3 upgradies 6.39 us/L - 45 downgradie
1	Bis(2-chloro/sopropy()other		с	2.4E-01	3.5E-02		2.4E+00	3.5E-01		2.4E+01	3.5E+00		5.1E+01		1 29 UHI - US
	Bis(chloromol/tyt)ethor		c	3.9E-05	8.4E-06		3.9E-04	8.4E-05		3.9E-03	8.4E-04		4.5E-03	i -	16,31 %
_	Bromodichloromethana	×	c	1.4E-01	2.1E-02		1.4E+00	2.1E-01		1.4E+01	2.1E+00		2.1E+00		1 downgradic
	Bromoform		c	2.2E+00	2.1E-01		2.2E+01	2.1E+00		2.2E+02	2.1E+01		8.3E-03		1
	1,3-Butadione		c	8.7E-03	3.9E-03		8.7E-02	3.9E-02		8.7E-01	3.9E-01		2.9E-03		1
	Carbon disulfido		NC	7.0E+02	2.2E+02	 	7.0E+03	2.2E+03	 -	7.0E+04	2.26+04		5.6E+02	ţ	1
	Carbon tetrachioride	†	c	1.6E-01	2.6E-02	<u> </u>	1.6E+00	2.68-01		1,6E+01	2.6E+00		5.0E+00 ¹		1
	Chlordane		c	2.4E-02	1.5E-03	 	2.4E-01	1.5E-02		2.4E+00	1.5E-01	 	1.2E+01		1
	2-Chloro-1,3-butadione (chloroprene)		NC NC	7.0E+00	1.8E+00	_	7.0E+01	1.9E+01		7.0E+02	1.9E+02		1.4E+01		1
														-	1
	Chlorobonzene	-	NC_	6.0E±01	1.3E+01	†	6.0E+02	1.3E+02	-	6.0E+03	1.3E+03		3.9E+02		1
	1-Chlorobutana	X	NC NC	1.4E+03	3.7E+02	 - 	1.4E+04	3.7E+03	 	1,4E+05	3.7E+04	+	2.0E+03		1
_	Chlorodibromomethene	х		1.0E-01	1.2E-02	 	1.0E+00	1.2E-01	 	1.0E+01	1.2E+00	 	3.2E+00		1
	Chlorodifluoromethane		NC NC	5.0E+04	1,4E+04	 -	5.0E+05	1.4E+05	 		├ ──	 		9.17	191L
	Chloroothane (ethyl chloride)	 	NC	1.0E+04	3.8E+03	 	1.0E+05	3.8E+04	 	1.0E±08	3.8E+05	 	2.8E+04	1.1.7	1 3/1-
_	Chloroform	 	<u> </u>	1.1E-01	2.2E-02	├	1.1E+00	2,2E-01	-	1.1E+01	2,2E+00		8.0E+01 ¹	 	1
	2-Chlorophenot	×	NC	1.8E+01	3.3E+00	- -	1.8E+02	3.3E+01	 	1.8E+03	3.3E+02	 	1.1E+03		4
	2-Chloropropane	 	NC	1.0E+02	3,2E+01	- -	1,0E+03	3.2E+02	 -	1.0E+04	3.2E+03		1.7E+02		4
	Chrysone	х	С	1.2E+00	1.2E-01	 	1.2E+01	1.2E+00	 		ļ	 -	•-		4
156592	cis-1,2-Dichloroethylene	<u> </u>	ЙС	3.5E+01	8.8E+00	-	3.5E+02	8.8E+01		3.5E+03	8.8E+02	ļ	2_1E+02		4
123739	Crotonaklehyde (2-butonal)	×	<u> </u>	4.5E-03	1.6 <u>E-03</u>	ļ	4.5E-02	1.6E-02	 	4.5E-01	1.6E-01	<u> </u>	5.6E+00]
98826	Cumena	<u> </u>	NC	4.0E+02	8.1E+01	1	4.0E+03	8.1E+02		4.0E+04	8.1E+03		8.4E+00		1

* The highest concentration is noted for wells MW-15, 5-3 and 45.

Table 2c; Question 4 Generic Screening Levels and Summary Sheet 1 Risk \approx 1 x 10^4

CAS No.	Chemicat	Compounds with Provisional Toxicity Data Extrapolated From Orel Sources	Basis of Target Concentration C=cancer risk NC=poncancer risk	Target Inde Concentration Both the Presc Level and the Ta Index [R=10 ⁵ , F Cupy (ug/m3)	lo Satisfy ribed Risk rgot Hazard : (i=1)	Measured or Ressonably Estimated Indoor Air Concontration [if available] (specify units)	Targot Sholl Concontration Co to Targot Inc Concontration Wi Gas to Indoor Air Factor=: Cooley (Ug/m3)	orrosponding door Air hare the Soil Atlenuation 0.1	Moasured or Reasonably Estimated Shallow Soil Gas Concentration [if available] (specify units)	Target Dee Concen Correspondin Indoor Air Co Where the S Indoor Air A Factor Cook (ug/m3)	itration ing to Target oncentration Soil Gas to attenuation =0,01	Measured or Reasonably Estimated Deep Soil Gas Concentration [if aveitable] [apecity units)	Target Groundwater Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor = 0,001 and Partitioning Across the Water Table Obeys Honry's Lew Cop (up1.)	Measured or Reasonably Estimated Groundwater Concentration [if available] (specify units)	
72559 E		X	C C	2.5E-02	1.9E-03	(spouly dilits)	2,5E-01	1,9E-02	Lapocally units)	2.5E+00	1.9E-01	(apouty array	z.9E+01	(4,500)	
	libonzofuran	x .	NC NC	1.4E+01	2.0E+00		1.4E+02	2.0E+01		1.4E+03	2.0E+02		44		
	,2-Dibromo-3-chloropropane		NC NC	2.0E-01	2,1E-02		2.0E+00	2.1E-01		2.0E+01	2.1E+00	-	3.3E+01		
$\overline{}$	2-Dibromoethano (ethylono dibromido)		c	1,1E-02	1.4E-03	-	1,1E-01	1.4E-02		1.1E+00	1,4E-01		3.6E-01	1	1
	,3-Dichlorobanzana	х	NC	1.1E+02	1.7E±01	<u> </u>	1.1E+03	1.7E+02		1.1E+04	1.7E+03		8.3E+02		1
	,2-Dichlorobenzene		NC	2.0E+02	3.3E+01	_	2.0E+03	3.3E+02		2.0E+04	3.3E+03		2.6E+03		
	A-Dichlorobenzene		NC	8.0E+02	1.3E+02		8.0E+03	1.3E+03		8.0E+04	1.3E+04		8.2E+03	Gil	vg]_
	Dichlorodifluoromothana		NC	2.0E+02	4.0E+01		2.0E+03	4.0E+02		2.0E+04	4.0E+03		1.4E+01		"
T	,1-Dichioroethano		NC	5.0E+02	1.2E+02		5,0E+03	1.2E+03		5.0E+04	1.2E+04		2.2E+03		1
	2-Dichioroothana		c	9.4E-02	2.3E-02		8.4E-01	2.3E-01		9.4E+00	2.3E+00		5.0E+00 ¹		1
	,1-Dichloroethylene		NC NC	2.0E+02	5.0E+01		2.0E+03	5.0E+02		2.0E+04	5.0E+03		1.9E+02		1
	2-Dichloropropano		NC NC	4.0E+00	8,7E-01		4.0E+01	8.7E+00		4.0E+02	8.7E+01	,	3.5E+01		1
	3-Dichloropropeno		C	6.1E-01	1,3E-01		6.1E+00	1.3E+00		8.1E+01	1.3E+01		8.4E-01		1
60571 0			c	5.3E-04	3.4E-05		5.3E-03	3.4E-04		5.3E-02	3.4E-03		8,6E-01		i
	ndosulfan	x	NC NC	2.1E+01	1.3E+00		2.1E+02	1.3E+01					**		i
	pichlorohydrin		NC NC	1.0E+00	2.6E-01		1.0E+01	2.6E+00		1.0E+02	2.6E+01		8.0E+02		1
	thyl ather	×	NC NC	7.0E+02	2.3E+02		7.0E+03	2.3E+03		7.0E+04	2.3E+04		5.2E+02		1
-	Unylacolate	×	NC	3.2E+03	8.7E+02		3.2E+04	8.7E+03		3.2E+05	8.7E+04		5.6E+05		1
	lhylbenzene		c	2.2E+00	5.1E-01		2.2E+01	5.1E+00		2.2E+02	5.1E+01		7.0E+02 ¹		1
	thylene oxide		c	2.4E-02	1.4E-02		2.4E-01	1.4E-01		2.4E+00	1.4E+00		1_1E+00		1
	thylmothecrylate	×	NC	3.2E+02	6.8E+01		3.2E+03	6.8E+02		3.2E+04	6.8E+03		9.1E+03	1	1
86737 F		×	NC NC	1.4E+02	2.1E+01	t —	1.4E+03	2.1E+02			<u></u>				ļ
110009 F		×	NC	3.5E+00	1.3E+00	_	3.5E+01	1.3E+01	i	3.5E+02	1.3E+02		1.6E+01		İ
-T	amme-HCH (Lindeno)	×	c	6.6E-03	5.5E-04		6.6E-02	5.5E-03		6.6E-01	5.5E-02		1,1E+01		1
	loptachlor	7	c	1.9E-03	1.2E-04		1.9E-02	1.2E-03		1.9E-01	1.2E-02	·	4.0E-01 [†]		1
T	loxachloro-1,3-butadione		c	1.1E-01	1.0E-02		1.1E+00	1.0E-01		1,1E+01	1.0E+00		3.3E-01		i
			C	5.3E-03	4.5E-04		5.3E-02	4.5E-03		5.3E-01	4.5E-02		1.0E+00 [†]		ì
	foxechlorocyclopentadiono		NC NC	2.0E-01	1.8E-02		2.0E+00	1.8E-01		2.0E+01	1.8E+00		5.0E+01 ¹		1
T	lexachloroethane		c	6.1E-01	6.3E-02		6.1E+00	6.3E-01		6.1E+01	6.3E+00		3.8E+00		1
110543			NC	2.0E+02	5.7E+01	<u> </u>	2.0E+03	5.7E+02		2.0E+04	5.7E+03		2,8E+00		1
	lydrogon cyanide		NC	3.0E+00	2.7E+00		3.0E+01	2.7E+01	<u> </u>	3.0E+02	2.7E+02		5.5E+02	-	1
	sobutanol	×	NC NC	1.1E+03	3.5E+02	1	1.1E+04	3.5E+03		1.1E+05	3.5E+04		2.2E+06		1
-	Mercury (plemental)		NC	3.0E-01	3.7E-02		3.0E+00	3.7E-01		3.0E+01	3.7E+00		6.8E-01	-	1
	Anthacrylonitrio		NC NC	7.0E-01	2.6E-01	_	7.0E+00	2.6E+00		7.0E+01	2.6E+01	_	6.9E+01		ĺ
-	Anthoxychior	×	NC NC	1.8E+01	1.2E+00					1,55,401	•.		6.3(.70)		i
	Acthyl acciain	×	NC	3.5E+03	1.2E+03		3.5E+04	1.2E+04		3.5E+05	1.2E+05		7.2E+05		1
	Molinys aczylate	×	NC NC	1.1E+02	3.0E+01		1.1E+03	3.0E+02		1.1E+04	3.0E+03		1.4E+04	-	1

Table 2c November 20, 2002

Table 2c: Question 4 Generic Screening Levels and Summary Sheet 1 Risk = 1 x 10^{4}

Company Comp	HISK PIX 1														
Associate Asso	CAS No.	Chemical	with Provisional Toxicity Data Extrapolated From Oral	Concontration Cocancer risk	Concontration Both the Prescu Level and the Ta index [R=10 ⁴ , F	to Satisfy ribod Risk rget Hazard : II=1)	Roasonably Estimated Indoor Air Concentration [if available]	Concontration Co to Target Ind Concontration Wi Gas to Indoor Air Factor=i	rresponding loor Air nara tha Soil Attanuation 0.1	Reasonably Estimated Shallow Soil Gas Concentration [if available]	Concen Correspondir Indoor Air Co Whore the S Indoor Air A Factor C	Imition og to Targot nochlation Soll Gas to Itionuation -0.01	Roasonably Estimated Deep Soil Gas Concentration [if available]	Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor = 0,001 and Partitioning Across the Water Table Obeys Henry's Law Cov	Roesonably Estimated Groundwater Concentration [if available]
190875 Methyropenhamme	74839	Methyl bromide		NC	5.0E+00	1.3E+00		5.0E+01	1.3E+01_		5.0E+02_	_1.3E+02		2.0E+01	
TABLE Materiane transists X	74873	Methyl chioride (chloromethane)		C	2.4E+00	1.2E+00		2.4E+01	1.2E+01		2,4E+02	1.2E+02		6.7E+00_	
25820 Micropero advision C \$5,800 \$5,	108872	Methylcyclohexane		NC	3.0E+03	7.5E+02		3.0E+04	7.5E+03	_	3.0E+05	7.5E+04		7.1E+02	
Total Machyselvistation (2-bytaneon) NG 1,06-103 3,66-02 1,06-104 3,06-103 1,06-105 3,06-104 1,06-105	74953	Methylene bromide	x	NC	3.5E+01	4.9E+00		3.5E+02	4.8E+01		3.5€+03	4,9E+02		9.9E+02	
	75092	Mothylene chlorida		c	5.2E+00	1.5E+00		5.2E+01	1.5E+01		5.2E+02	1.5E+02		5.8E+01	
Section Sect	78933	Methylethylketone (2-butanone)		NC	1.0E+03	3.4E+02		1.0E+04	3.4E+03		1.0E+05	3.4E+04		4.4E+05	
B1576 244601/suppithalison	108101	Mothylisobutylkotone		NC	8.0E+01	2.0E+01		8.0E+02	2.0E+02		8.0E+03	_2.0E+03		1.4E+04_	
16M04 MTDE	80626	Mothylmothacrylato		NC	7.0E+02	1.7E+02		7.0E+03	1.7E+03		7.0E+04	1.7E+04		5.1E+04	
106330 m.Xyann	91576	2-Methylnaphthalono	x	NC	7.0E+01	1_2E+01		7.0E+02	1.2E+02		7.0E+03	1.2E+03		3.3E+03_	
97200 Naprihajace	1634044	мтве		NC NC	3.0E+03	8.3E+02		3.0E+04	8.3E+03		3.0E+05	8.3E+04		1.2E+05	
104518	108383	m-Xyleno	x	NC	7.0E+03	1.6E+03		7.0E+04	1.6E+04		7.0E+05	1.6E+05		2.3E+04	
See55 Nisobenzone	91203	Naphthaiono		NC	3.0E+00	5.7E-01		3.0E+01	5.7E+00		3.0E+02	5.7E+01		1.5E+02	
Tyte Tyte	104518	n-Buty/benzenn	x	NC	1.4E+02	2.6E+01		1.4E+03	2.6E+02		1.48+04	2.6E+03		2.6E+02	
\$2416\$\text{Interview-dim-bulyamina}	98953	Nitrobenzone		NC	2.0E+00	4.0E-01		2.0E+01	4.0E+00		2.0E+02	4.0E+01		2.0E+03	
103651 n-Propylanzeme	79469	2-Nitropropane		C	9.0E-04	2.5E-04		9.08-03	2.5E-03		9.0E-02	_2.5E-02		1.8E-01	
B872 ONTrotokinne	924163	N-Nitroso-di-n-butytamina		С	1.5E-03	2.4E-04		1.5E-02	2.4E-03		1.5E-01	2.4E-02		1,2E-01	
95476 0-Xyéroe X NC 7.0E+03 1.5E+03 7.0E+04 1.5E+04 7.0E+05 1.5E+05 3.3E+04 1.0E+04 7.0E+05 1.5E+05 2.2E+04 1.0E+04 1.0E+04 7.0E+05 1.5E+05 2.2E+04 1.0E+04 1.0E+04 1.0E+04 1.0E+05 1	103651	n-Propylbonzene	×	ЙС	1.4E+02	2.8E+01		1,4E+03	2.8E+02		1.4E+04	2.8E+03		3.2E+02	
108423 p-Xylene	88722	o-Nitrotoluane	х -	NC NC	3.5E+01	6.2E+00		3.5E+D2	6,2E+01		3,5E+03	6.2E+02		6.8E+04	L
129000 Pyrene	95476	o-Xylene	x	NC_	7.0E+03	1.6E+03		7.0E+04	1.6E+04		7.0E+05	1.6E+05		3,3E+04_	L
135988 sec. Butylbonzene	106423	p-Xylene	×	NC.	7.0E+03	1.6E+03		7.0E+04	1.6E+04_		7.0E+05	1.6E+05		2.2E+04	
100425 Styrene	129000	Pyréno	х	NC NC	1.1E+02	1.3 <u>E+</u> 01		L						7-	
98066	135988	sac-Butylbenzene	x	NC	1.4E+02	2.6E+01		1.4E+03	2.6E+02		1.4E+04	2.6E+03		2.5E+02	
Social 1,1,2-Tetrephloronthane C 3,3E-01 4,8E-02 3,3E+00 4,8E-01 3,3E+00 3,3E+00 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 3,3E+00 1,2E-01 1,2E-	100425	Styrene		ΪΝC	1.0E+03	2.3E+02		1.0E+04	2.3E+03		1.0E+05	2.3E+04		8.9E+03	
75345 1,2,2-Tetrachlorogethane G 4 2E-02 6,1E-03 4 2E-01 6,1E-02 4 2E+00 6,1E-01 3,0E+00 127184 Tetrachlorogitylene C 8,1E-01 1 2E-01 8,1E+00 1,2E+00 8,1E+01 1 2E+01 5,0E+00¹ 108883 Toluene NC 4,0E+02 1,1E+02 4,0E+03 1,1E+03 4,0E+04 1,1E+04 1,5E+03 1,5E+03 156605 trans-1,2-Dichloroethylona X NC 7,0E+01 1,8E+01 7,0E+02 1,8E+02 7,0E+03 1,8E+03 1,8E+02 76131 1,1,2-Trickloro-1,2,2-trifluoroethylona NC 3,0E+04 3,9E+03 3,0E+05 3,9E+03 3,9E+03 3,0E+06 3,9E+03 1,5E+03 3,0E+04 2,0E+03 2,0E+04 2,0E+03 3,0E+04 2,0E+03 3,0E+04 2,0E+03 3,0E+04 2,0E+03 3,0E+04 3,0E+04 3,0E+04 3,0E+04 3,0E+	98068	lori-Butylbonzano	x	NC	1.4E±02	2.6E+01		1.4E+03	2.6E+02		1.4E+04	2.6E+03		2.9E+02	
127164 Tetrachlorocitytone C 8.1E-01 12E-01 8.1E+00 12E-00 8.1E+01 12E-01 5.0E+00 108883 Toluone NC 4.0E+02 1.1E+02 4.0E+03 1.1E+03 4.0E+04 1.1E+04 1.5E+03 1.0E+02 1.0E+03 1.0E+02 1.0E+03 1.0E+02 1.0E+03 1.0E+03 1.0E+02 1.0E+03 1.0E+03 1.0E+02 1.0E+03	630206	1,1,1,2-Tetrechlorosthane		с	3.3E-01	4.8E-02		3.3E+00	4.8E-01		3.3E+01	4.8E+00		3.3E+00	
108883 Toluono	79345	1,1,2,2-Tetrachkroethano		С	4.2E-02	6.1E-03		4.2E-01	6.1E-02		4.2E+00	_6.1E-01		3,0E+00_	
156605 trans-1,2-Dichloroethylone X NC 7,0E+01 1.8E+01 7,0E+02 1.8E+02 7,0E+03 1.8E+03 1.8E+02 76131 1,12-Trichloro-1,2,2-trifluoroethane NC 3,0E+04 3,9E+03 3,0E+05 3,9E+05 1.5E+03 1.20821 1,2,4-Trichlorophysizane NC 2,0E+02 2,7E+01 2,0E+03 2,7E+02 2,0E+03 2,7E+03 3,4E+03 3,4E+03 1.20821 1,2-Trichlorophane C 1.5E-01 2,0E+02 2,0E+03 2,7E+02 2,0E+04 2,7E+03 3,4E+03 1.20821 1,1-Trichlorophane NC 2,2E+03 4,0E+02 2,2E+04 4,0E+03 2,2E+05 4,0E+04 3,1E+03 1.20821 1,1-Trichlorophane NC 2,2E+03 4,0E+03 2,2E+04 4,0E+03 2,2E+05 4,0E+04 3,1E+03 1.20821 1,1-Trichlorophane NC 2,2E+02 4,1E+03 2,2E+04 4,0E+03 2,2E+05 4,0E+04 1,2E+04	127184	Tetrachloroothylone		<u>.</u> c	8,1E-01	1.2E-01		8.1E+00	1,2E+00		8.1E+01	1.2E+01	-	5.0E+00 1	
76131 1,1,2-Trickloro-1,2/2-trifluoroethane NC 3,0E+04 3,0E+05 3,0E+08 3,0E+08 3,0E+03 1,5E+03 120821 1,2,4-Trickloroethane NC 2,0E+02 2,7E+01 2,0E+03 2,7E+02 2,0E+03 2,7E+03 3,4E+03 79005 1,1,2-Trickloroethane C 1,5E-01 2,6E-02 1,5E+00 2,8E-01 1,5E+01 2,8E+00 5,0E+00 ¹ 71556 1,1,1-Trickloroethane NC 2,2E+03 4,0E+02 2,2E+04 4,0E+03 2,2E+05 4,0E+04 3,1E+03 79016 Trickloroethane NC 2,2E+03 4,1E-03 2,2E+04 4,0E+03 2,2E+00 4,1E-01 5,0E+00 ¹ 75694 Trickloroethane NC 7,0E+02 1,2E+02 7,0E+03 1,2E+03 7,0E+04 1,2E+04 1,8E+02 96184 1,2,3-Trickloroethane NC 4,9E+00 8,1E-01 4,9E+00 8,1E+01 4,9E+02 8,1E+01 2,9E+02	108883	Toluene		NC	4.0E+02	1.1E+02		4.0E+03	1.1E+03		4.0E+04	1.1E+04		1.5E+03	12
120821 1,2,4-Trichlorophenzone	156605	trans-1,2-Dichloroethylone	x	NC_	7,0E+01	1.8E+01		7.0E+02	1.8E+02		7.0E+03	1.8E+03		1.8E+02	
Telephone C 1.5E-01 2.8E-02 1.5E+00 2.8E-01 1.5E+01 2.8E+00 5.0E-00	76131	1,1,2-Trichioro-1,2,2-trifluoroethane		NC	3.0E+04	3.9E+03		3.0E±05	3.9E+04		3.0E+08	3.9E+05		1.5E+03	
71556 1_1_1_Trichlorogithano	120821	1,2,4-Trichlorobenzene		NC	2.0E+02	2.7E+01		2.0E+03	2.7E+02		2.0E+04	2.7E+03		3.4E+03	
79016 Trichforosithylene 11 X C 2.2E-02 4.1E-03 2.2E-01 4.1E-02 2.2E+00 4.1E-01 5.0E+00 1 75694 Trichforosithylene 11 X C 2.2E-02 4.1E-03 2.2E-01 4.1E-02 2.2E+00 4.1E-01 5.0E+00 1 75694 Trichforosithylene 11 X C 2.2E-02 4.1E-03 1.2E+03 7.0E+04 1.2E+04 1.2E+04 1.8E+02 96184 12,3-Trichforospopana NC 4.9E+00 8.1E-01 4.9E+01 8.1E+00 4.9E+02 8.1E+01 2.9E+02	79005	1,1,2-Trichloroothane		с	1.5E-01	2.6E-02		1.5E+00	2.8E-01		1.5E+01	2.8E+00		· -	
75694 Trichlorefluoremothana NC 7,0E+02 1,2E+02 7,0E+03 1,2E+03 7,0E+04 1,2E+04 1,8E+02 96184 12,3-Trichloregropana NC 4,9E+00 8,1E-01 4,9E+01 8,1E+00 4,9E+02 8,1E+01 2,9E+02	71556	1,1,1-Trichloronthano		NC	2.2E+03	4.0E+02		2,2E+04	4.0E+03			4.0E+04			
75694 Trichlorofluoromothana NC 7,0E+02 1,2E+02 7,0E+03 1,2E+03 7,0E+04 1,2E+04 1,8E+02 96184 1,2,3-Trichlorograpana NC 4,9E+00 8,1E-01 4,9E+00 4,9E+00 8,1E+01 4,9E+02 8,1E+01 2,9E+02	79016	Trichforoathylena ¹¹	x	С	2.2E-02	4.1E-03		2.2E-01	4.1E-02		2.2E+00	4.1E-01		5.0E+00 1	
96164 1,2,3-Trichlorograpana NC 4,9E+00 8.1E-01 4.9E+01 8.1E+00 4.9E+02 8.1E+01 2.9E+02	75694	Trichloroftuoromothana		NC	7.0E+02	1.2E+02		7.0E+03	1.2E+03		7.0E+04	1.2E+04		· - -	
95536 12,4-Trimethylbenzone NC 8.0E+00 1.2E+00 6.0E+01 1.2E+01 6.0E+02 1.2E+02 2.4E+01	96184	1,2,3-Trichloropropana		NC.	4.9E+00	8.1E-01		4.9E+01	8.1E+00		4.9E+02	8.1E+01			
	95636	1,2,4-Trimethylbenzene		NC	8.0E+00	1.2E+00		6.0E+01	1.2E+01		6,0E+02	1.2E+02		2.4E+01	

196

Table 2c: Question 4 Generic Screening Levels and Summary Sheet 1

Risk = 1 x 10⁴

CAS No.	Chemical	Compounds with Provisional Toxicity Oata Extrapolated From Oral Sources	Basis of Towns	Target Inde Concontration Both the Prescu Level and the Ta Index [R=10 ⁴ , H Cupyer (ug/m3)	to Salisfy ribod Risk rgot Hazard : !!=1)	Reasonably Estimated	Target Shalk Concentration Co to Target inc Concentration Wi Gas to Indoor Mr Factor= Cacing (ug/m3)	rresponding oor Air oore the Soil Attenuetion).1	Estimated Shallow Soil	Targol Dee Concon Correspondir Indoor Air Co Whore the ! Indoor Air A Factor Cod (ug/m3)	tration ng to Target encontration Soil Gas to tionuation =0.01		0.001 and Partitioning Across the Water Table Obeys Henry's Law C _{get}	Measured or Reasonably Estimated Groundwater Concentration [if available] (specify units)
CAS NO.	Crientical	300ICI3	NC-Poncancor nax	(uguna)	(PADA)	Tabecath numbl	(Ognis)	(DDCV)	(apocaly unita)	(ugnis)	(μρον)	16DCCHY UTIEZ		(SPANARY DITIES)
108678	1,3,5-Trimethy/benzena		NC	6.0E+00	1.2E+00		6.0E+01	1.2E+01		6.0E+02	1.2E+02		2.5E+01_	
108054	Vinyl acutate		NC	2.0E+02	5.7E+01		2.0E+03	5.7E+02		2.0E+04	5.7E+03		9.6E+03	
75014	Vinyl chloride (chloroethene)		с	2.8E-01	1.1E-01		2.8E+00	1.1E+00		2.8E+01	1.1E+01		2.0E+00 ¹	

^{75014/}finyt chloride (chloroschene)

AF = 0.01 for Deep Soil Gas Target Concentration

AF = 0.01 for Deep Soil Gas Target Concentration

AF = 0.01 for Deep Soil Gas Target Concentration

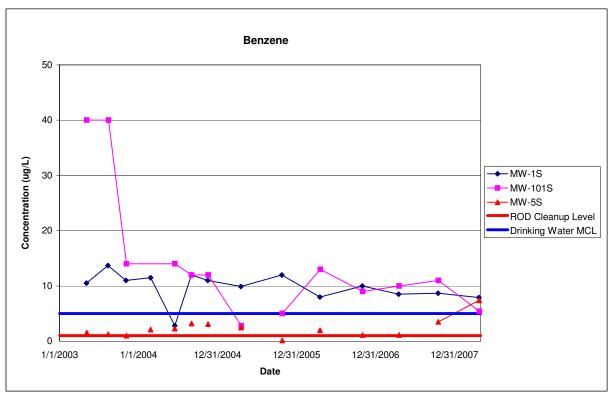
AF = 0.01 for Groundwater Target Concentration

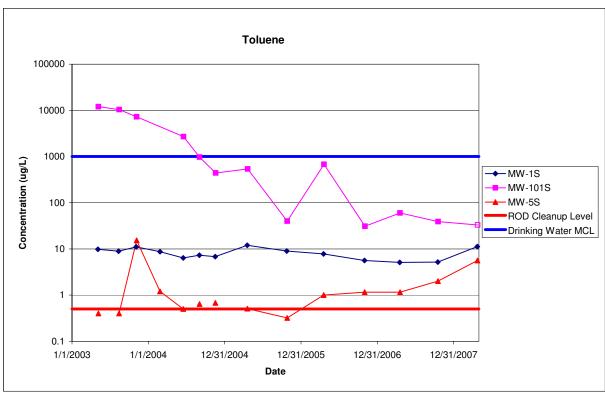
AF = 0.001 for Groundwater Target Concentration

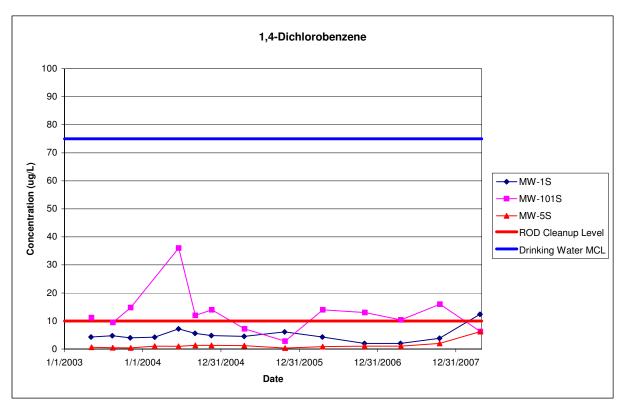
AF = 0.001 for Groundwater Target Concentration

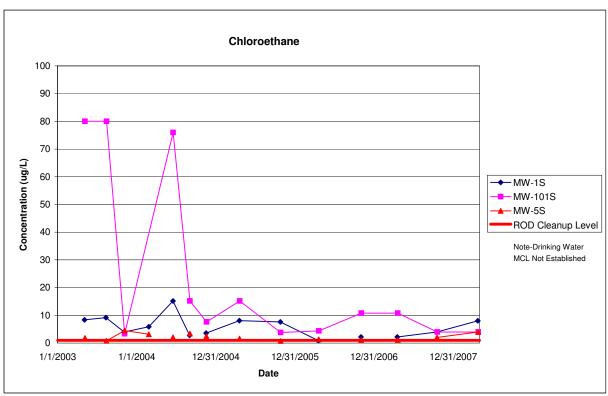
AF = 0.001 for Groundwater Target Concentration

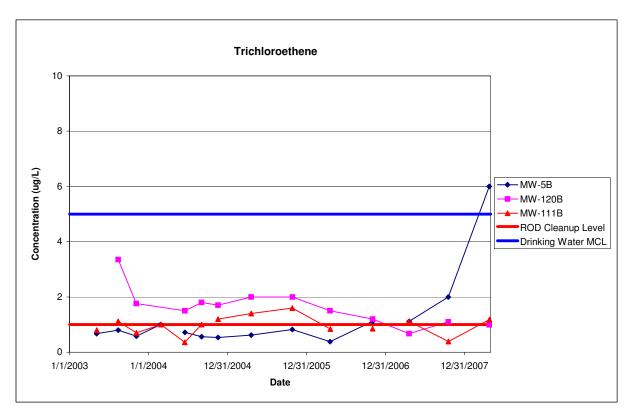
AF = 0.001 for Groundwater Concentration accords maximum possible chemical vapor concentration (pathway incomplete)

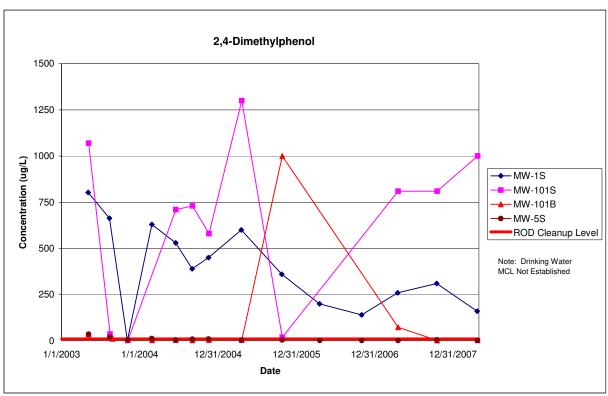

"Target soil gas concentration exceeds maximum possible vapor concentration (pathway incomplete)

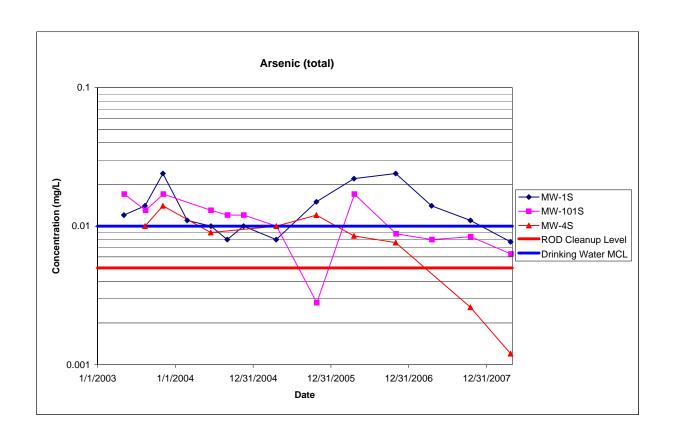

"Target soil gas concentration concentration is the MCL (for MCL for total Tinalomethanes. The MCL isted for m-Xylene, o-Xylene, and p-Xylene is the MCL for total Xylenes.)

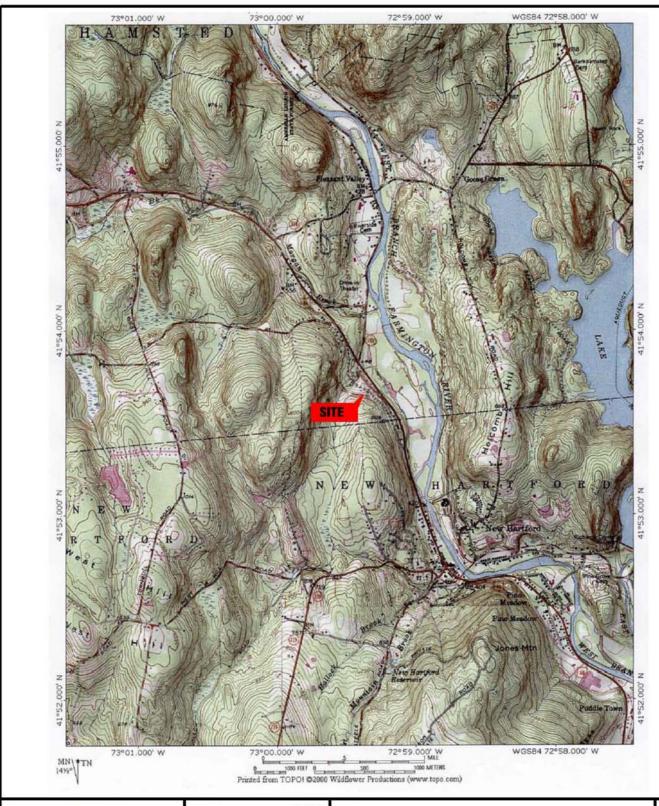

The target concentration for trichloroschytone is based on the upper bound cancer slope factor identified in EPA's draft risk assessment for trichloroschytone (US EPA, 2001). The slope factor is based on state-of-the-art molhodology, however the TCE assessment is still undergoing review. As a result, the slope factor and the target concentration values for TCE may be revised further. (Soe Appendix D.)


APPENDIX E


Graphs of Groundwater Concentration Trends for Select VOCs, SVOCs and Arsenic







 DATE:
 6/10/03

 DRAWN BY:
 PPH

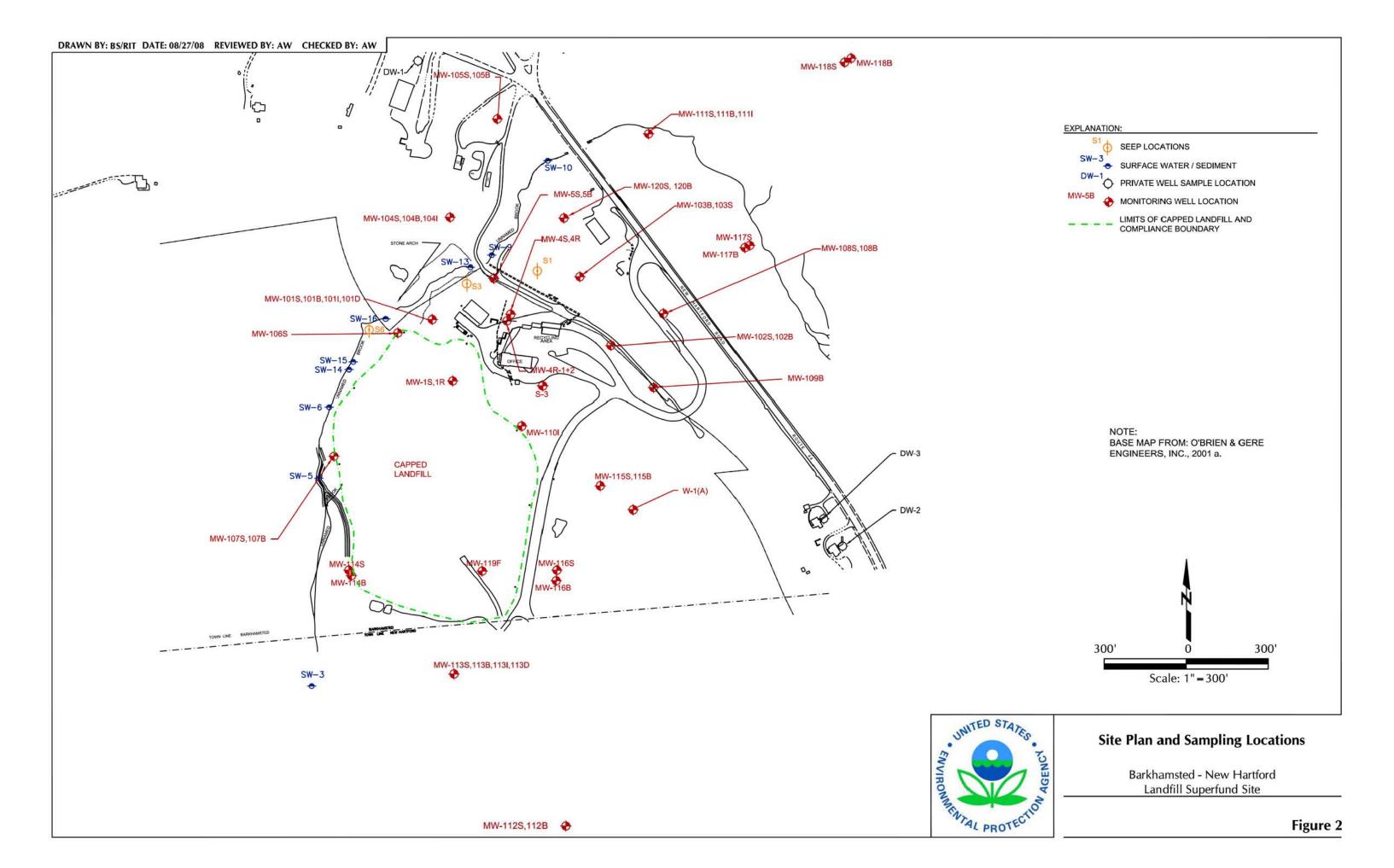
 REVIEWED BY:
 AW

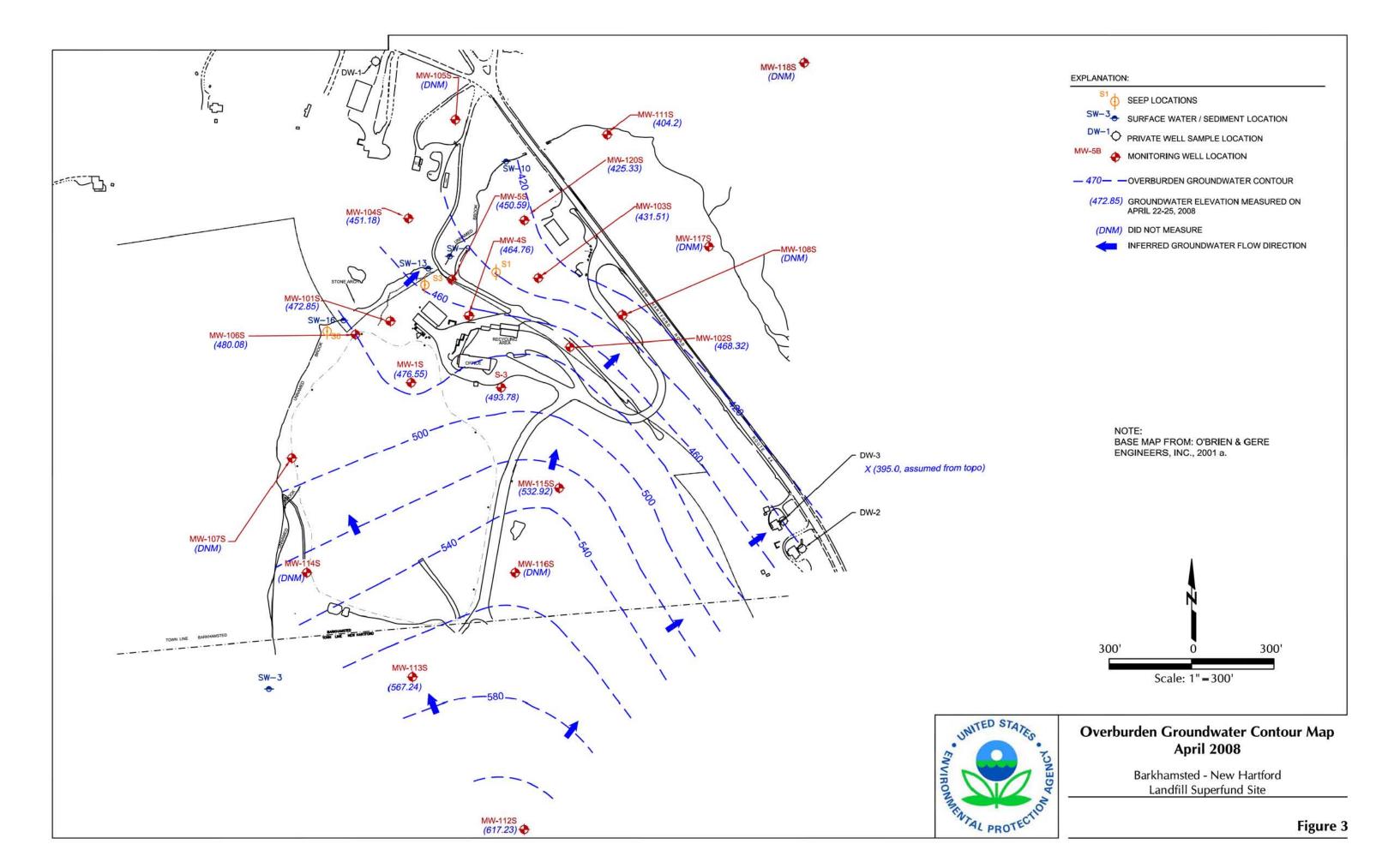
 APPROVED BY:
 AW

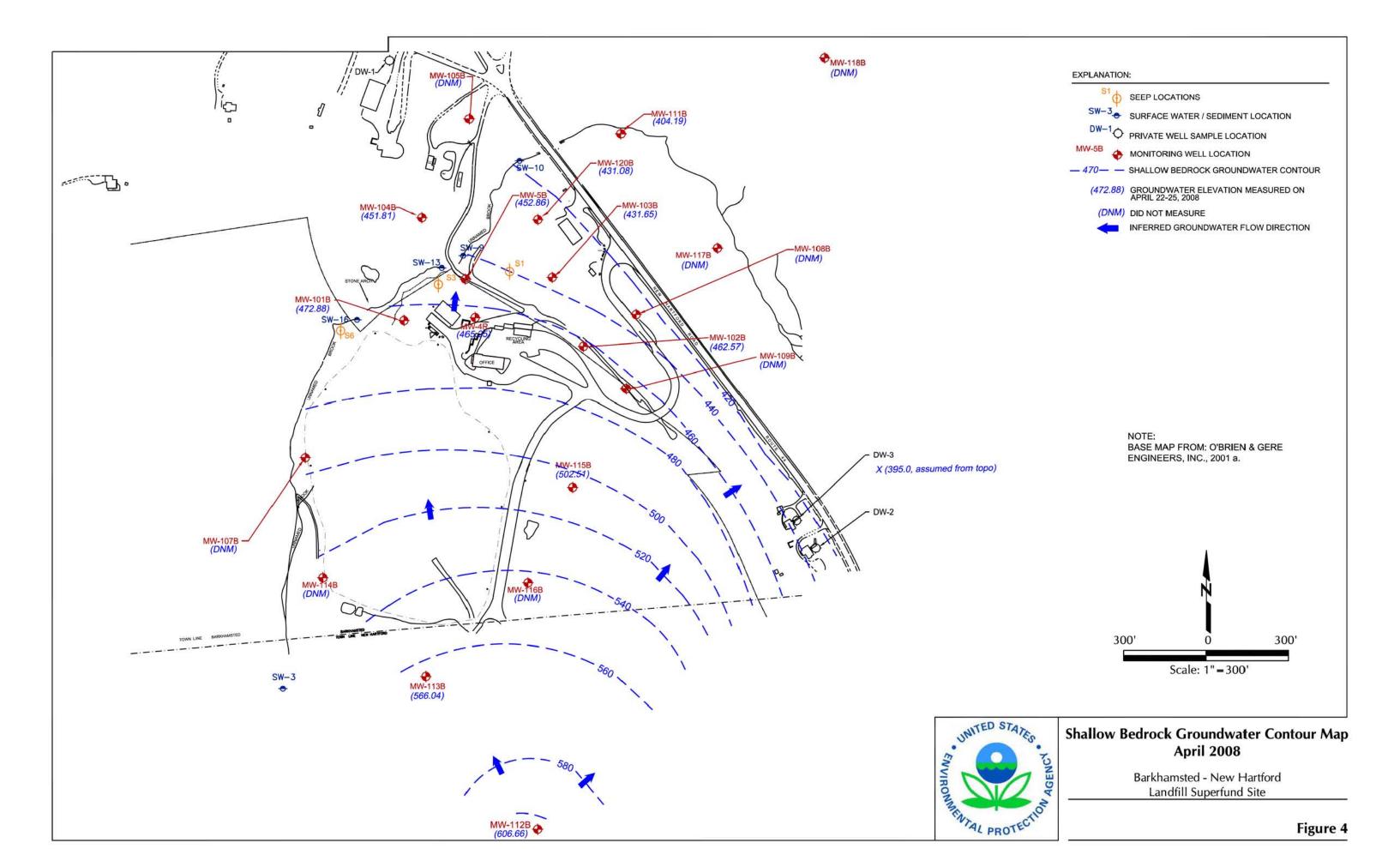
 SCALE:
 AS NOTED

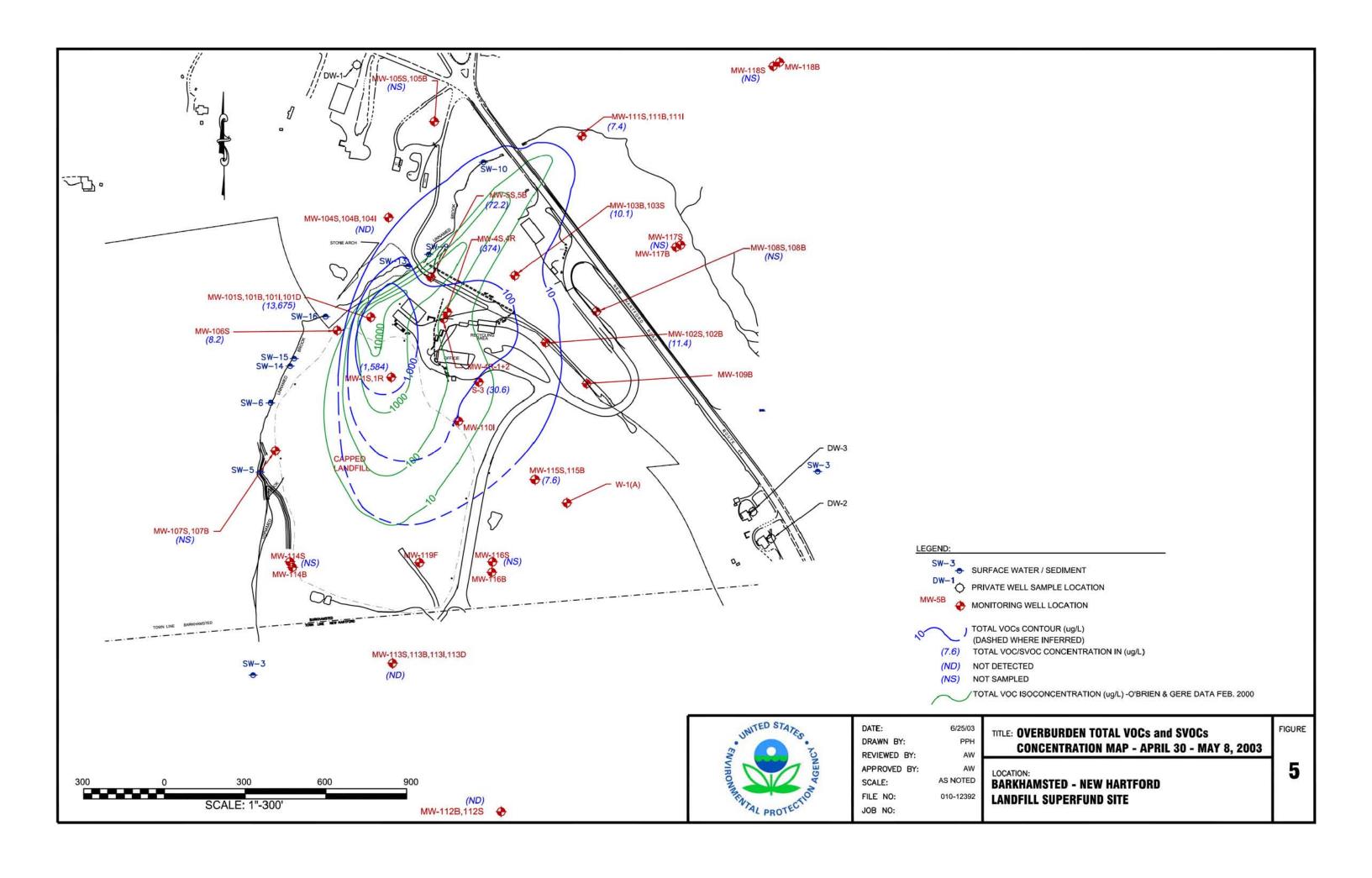
 FILE NO:
 010-12392

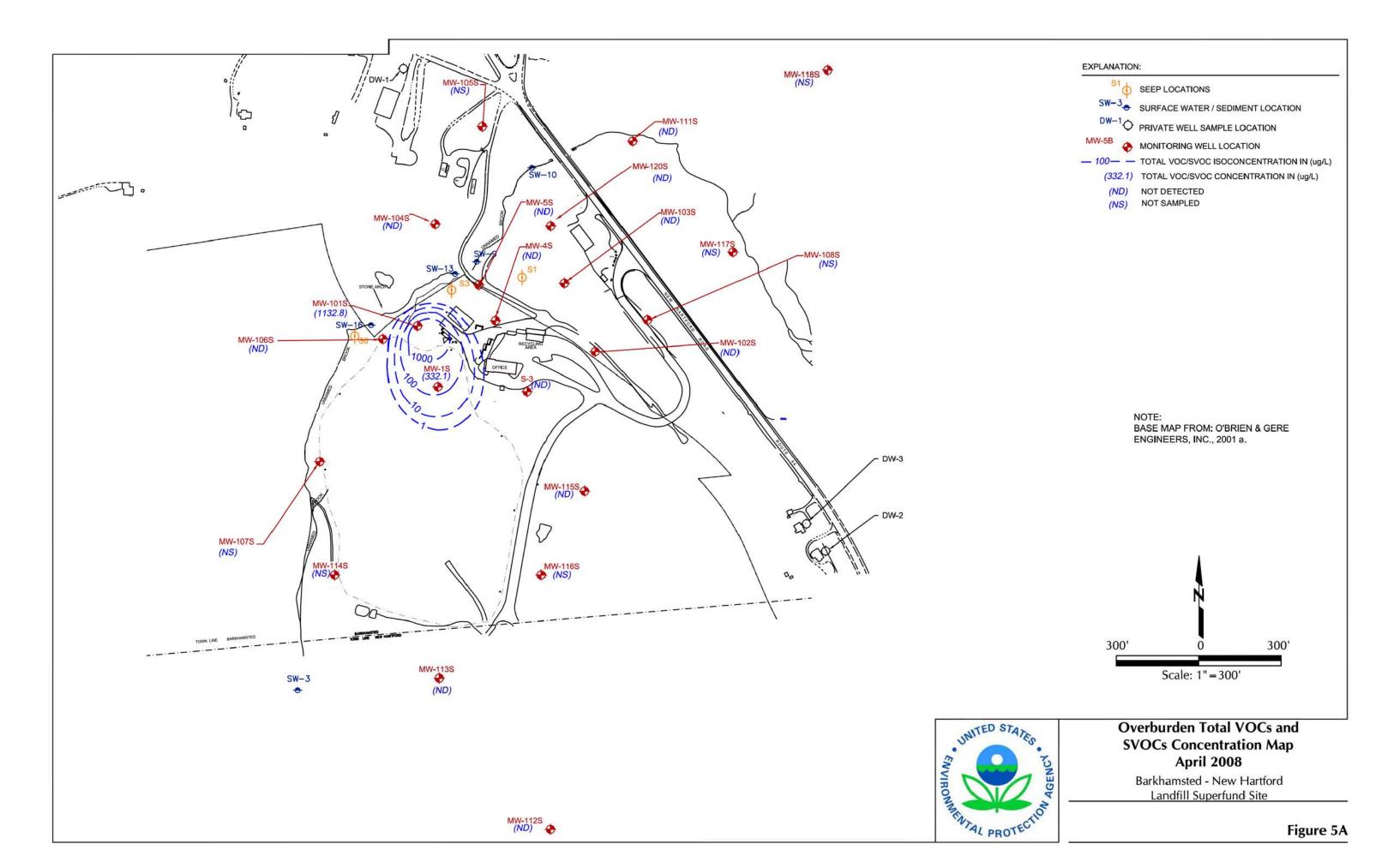
 JOB NO:
 010-12392

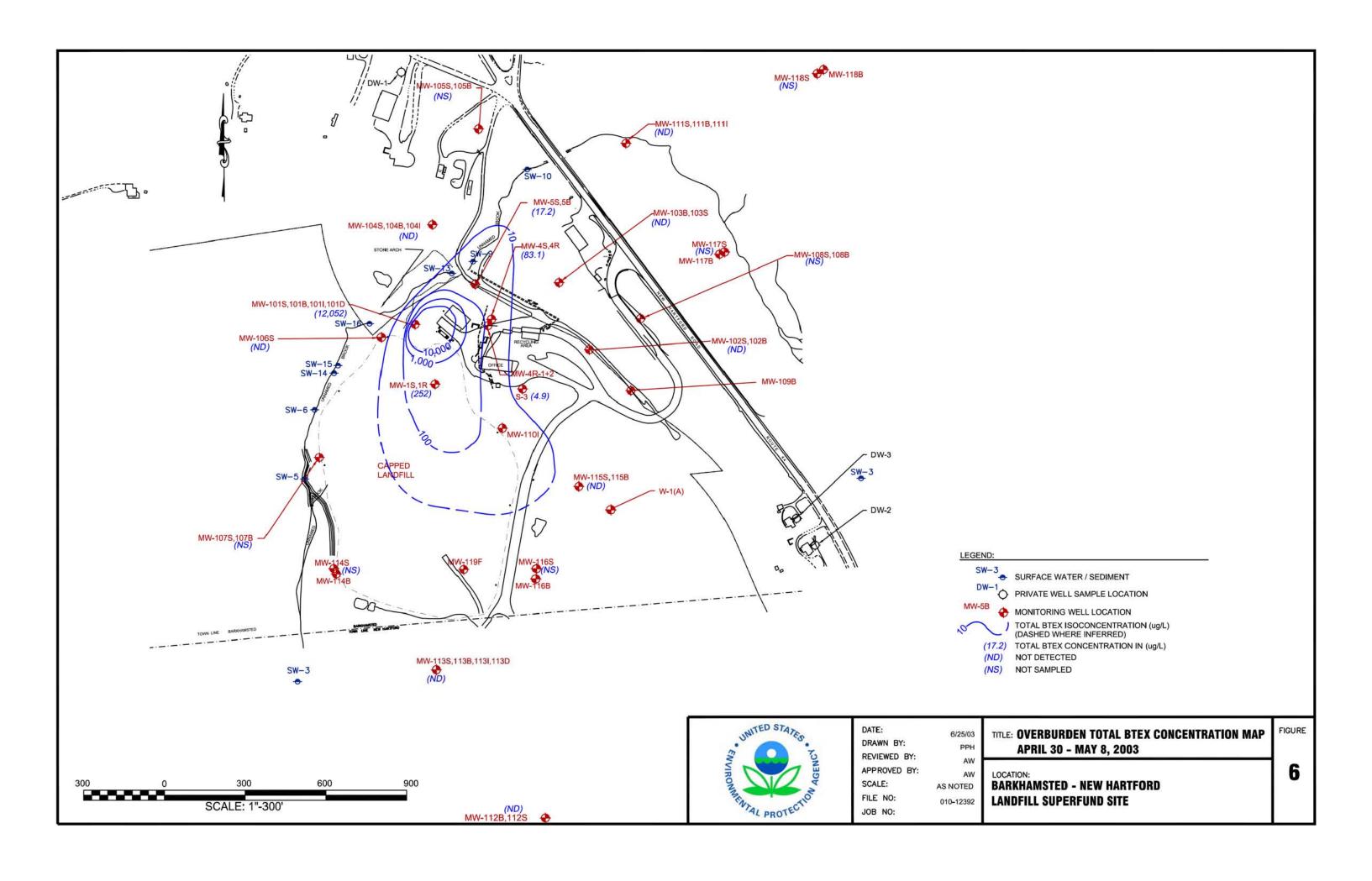

TOPOGRAPHIC MAP

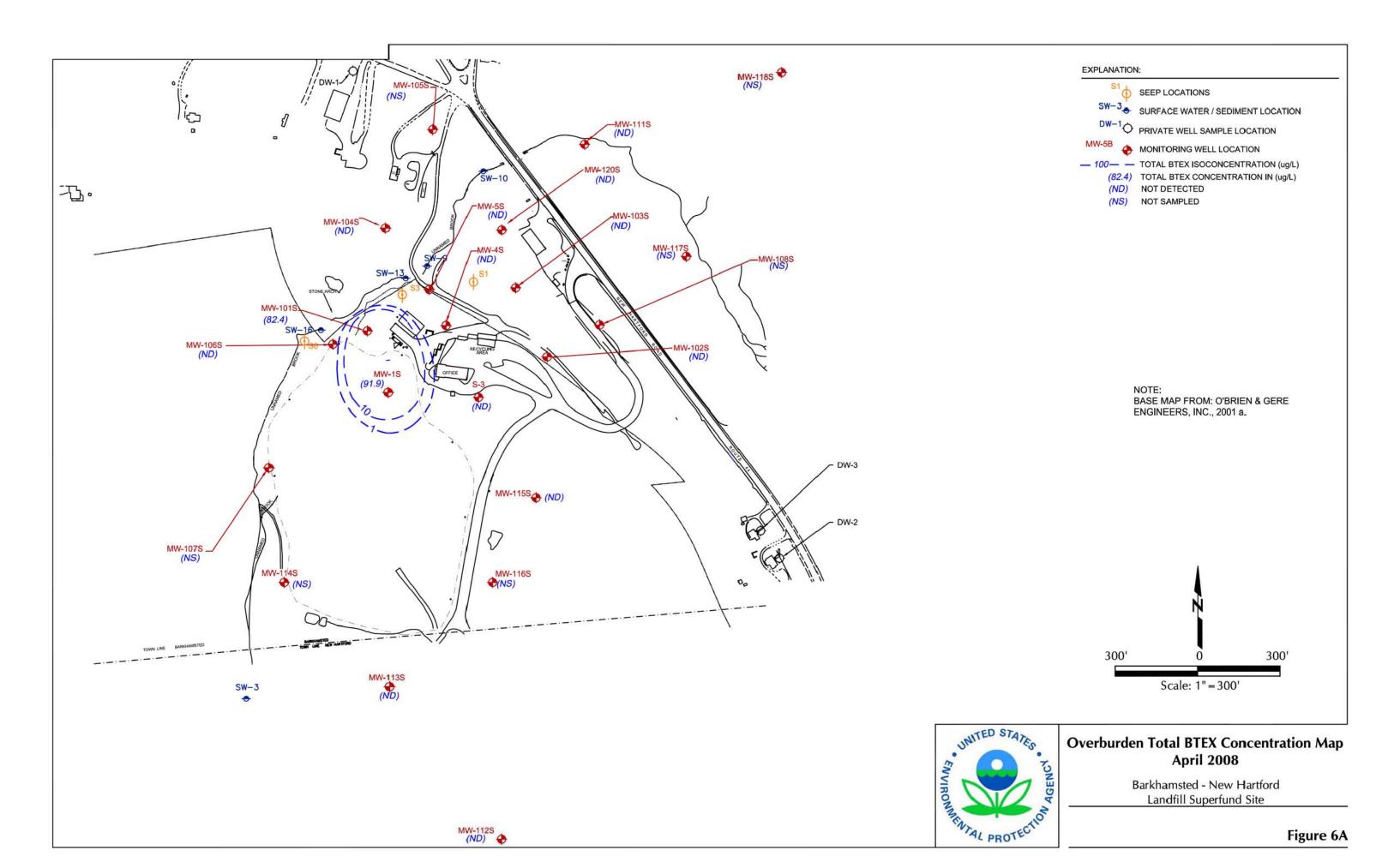

LOCATION:

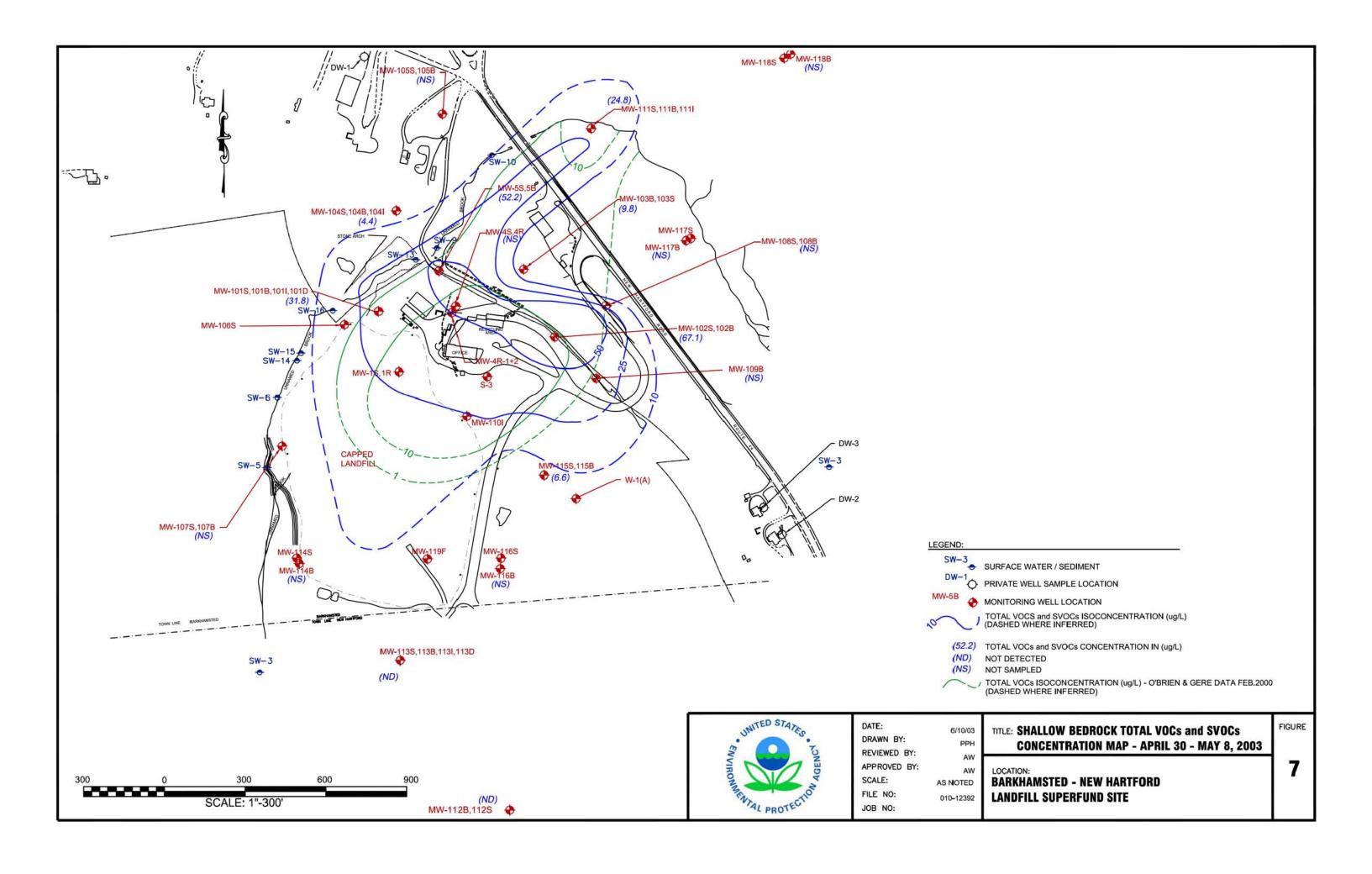

BARKHAMSTED - NEW HARTFORD LANDFILL SUPERFUND SITE

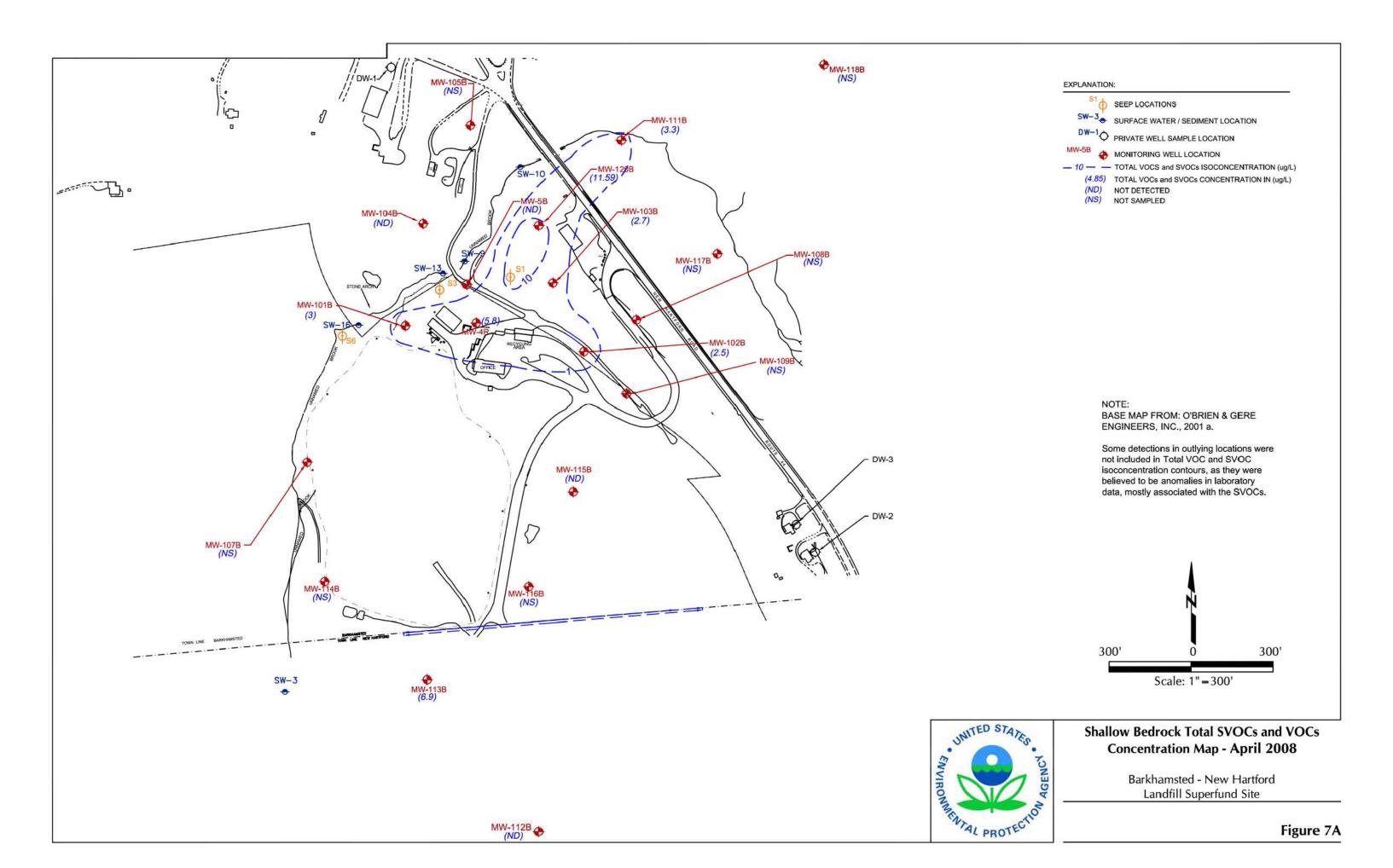

FIGURE:

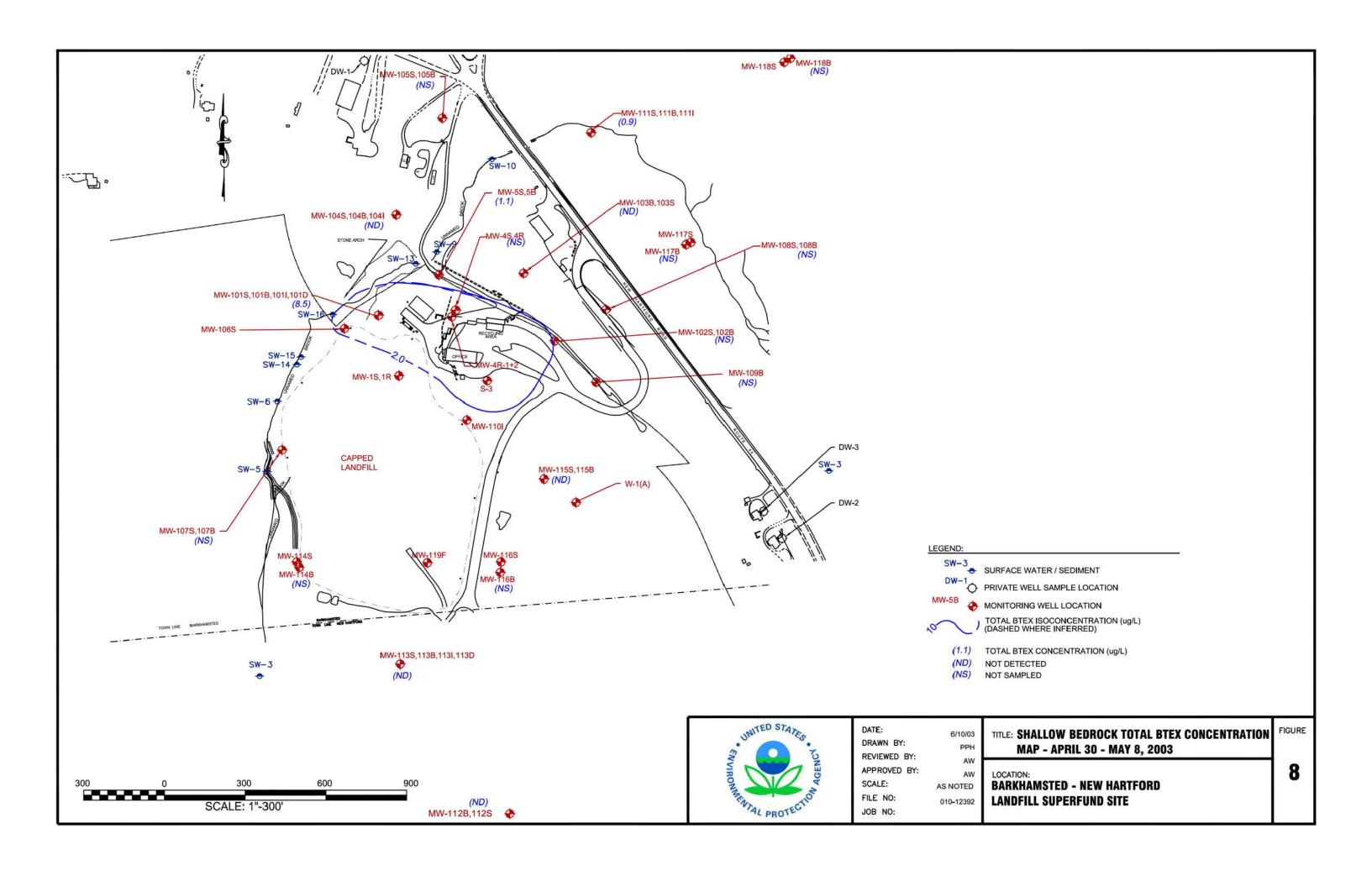

1











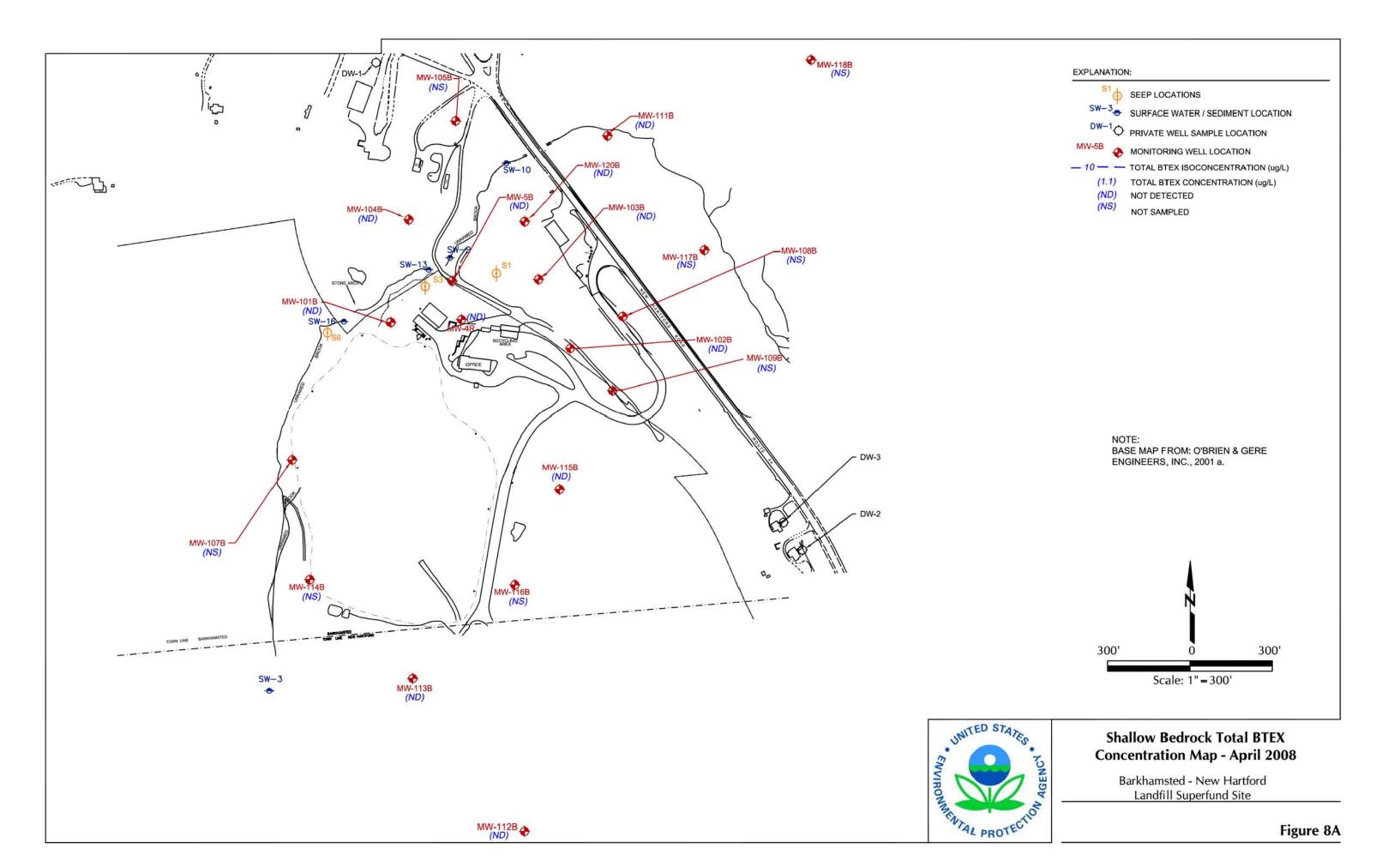


Figure 9 - Simulated and Observed Concentrations of 4-Methylphenol Overburden Well

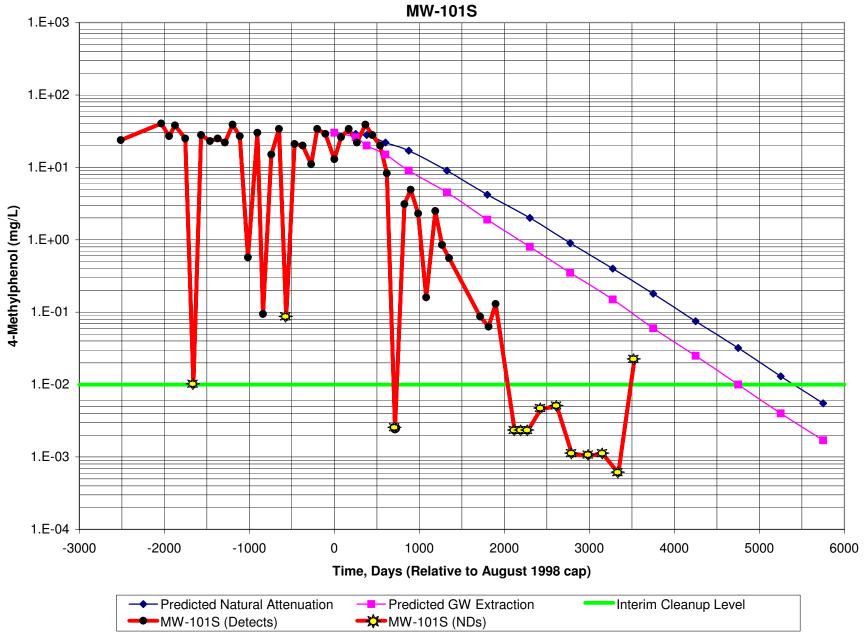


Figure 10 - Simulated and Observed Concentrations of 2-Butanone
Overburden Well
MW-101S

Figure 11 - Simulated vs Observed Concentrations of 4-Methylphenol Overburden Well MW-5S

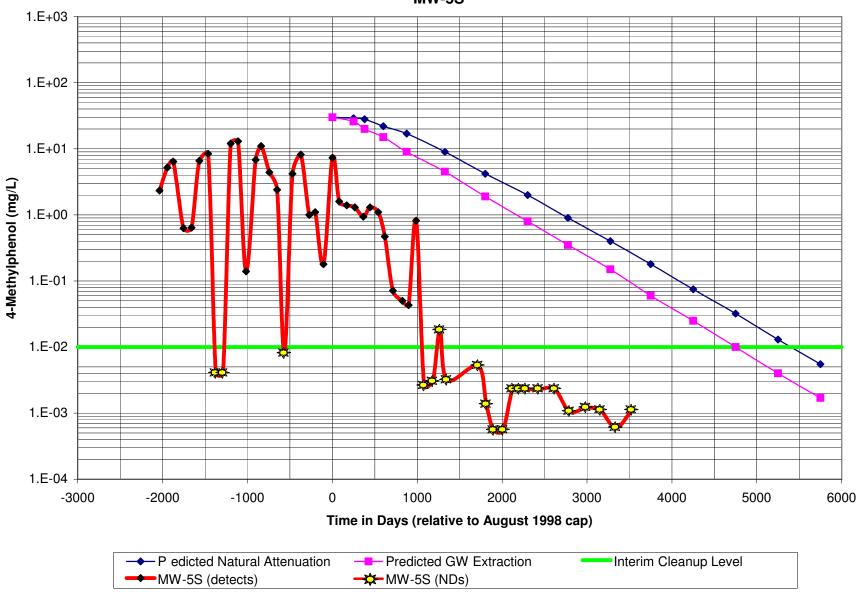


Figure 12 - Simulated vs. Observed Concentrations of 2-Butanone Overburden Well MW-5S

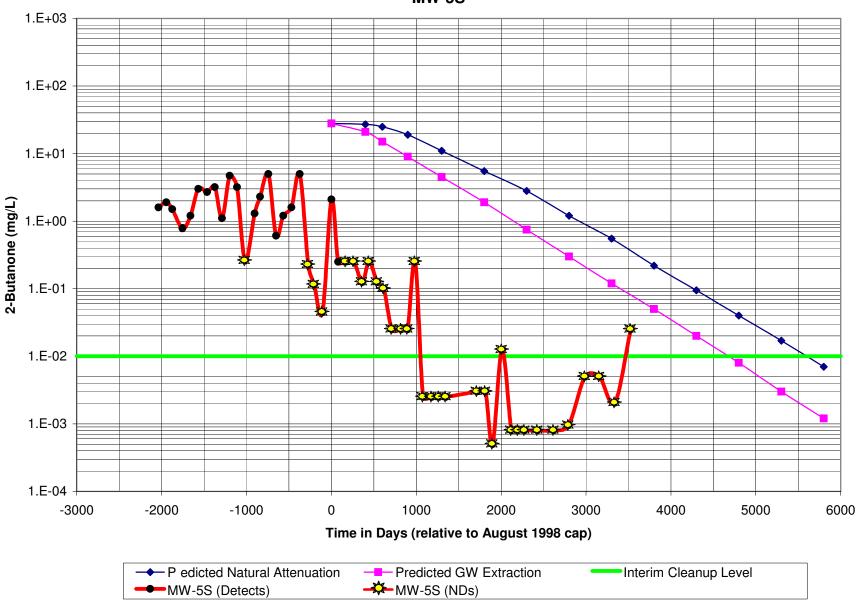


Figure 13- November 2003

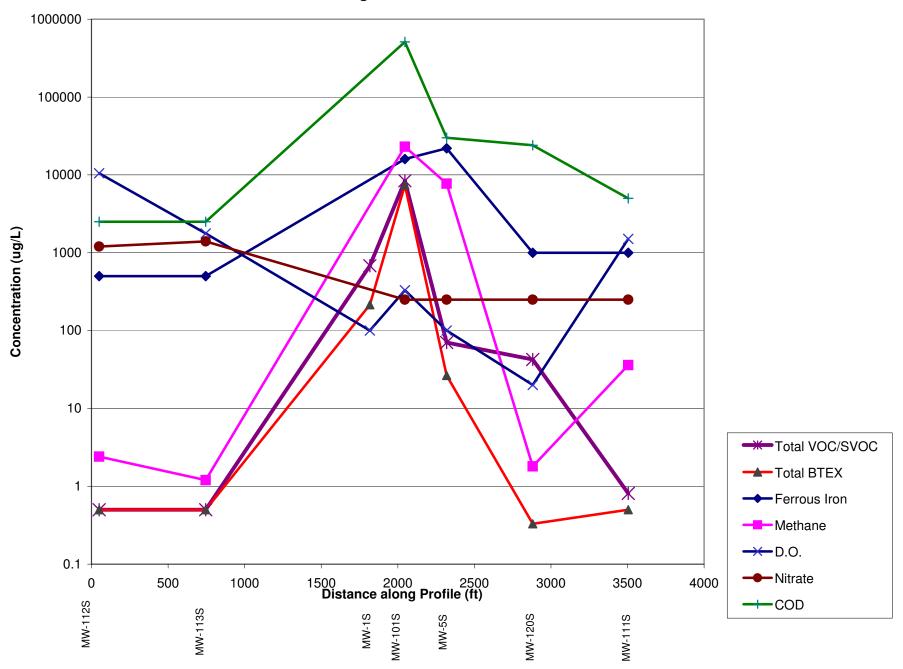


Figure 14 - April 2008

TABLE 2: CONTAMINANTS OF CONCERN AND OTHER TARGET ANALYTES

Medium/Matrix: Groundwater

$Benzene^1$	$Toluene^{I}$	Diethyl pthalate ²	Cadmium ²	Carbon disulfide ²
1,2-dichloroethane ¹	Ethylbenzene ²	Di-n-octyl pthalate ²	Calcium ²	Chlorobenzene ²
1,2-dichloropropane ¹	o-Xylene ²	Napthalene ²	Cobalt ²	Cis-1,2-Dichloroethene ²
$Chloroethane^{l}$	p-Xylene ²	Phenol ²	Copper ²	Styrene ²
$Chloroform^1$	m-Xylene ²	$Arsenic^{1}$	Iron ²	1,4-dichlorobenzene ¹
Chloromethane ¹	Acetone ²	$Chromium\ (total)^{l}$	Magnesium ²	1,2-dichlorobenzene ²
${\it Dibromochloromethane}^{\it 1}$	2 -Butanone $(MEK)^{1}$	$Lead^{l}$	Mercury ²	Bis(2-ethyl hexyl)
				pthalate ¹
Methylene chloride ¹	4-methyl-2-pentanone ¹	$Manganese^{1}$	Nickel ²	$2,4$ -dimethylphenol 1
$Trichloroethene (TCE)^{I}$	1,1,1-Trichloroethane ²	Aluminum ²	Potassium ²	4-methylphenol ¹
$Vinyl\ chloride\ (VC)^{I}$	1,1-Dichloroethane ²	Antimony ²	Selenium ²	2-methylnapthalene ²
Tetrachloroethene	2-Hexanone ²	Barium ²	Silver ²	2-methylphenol ²
Trans-1,2-dichloroethene	Bromomethane ²	Beryllium ²	Sodium ²	Benzoic acid ²
Thallium ²	Dissolved ethene ³	Chemical Oxygen	Vanadium ²	Zinc ²
		Demand (COD) ³		
Dissolved hydrogen ³	Ferrous Iron ³	Dissolved methane ³	Nitrite ³	Sulfate ³
Sulfide ³	Nitrate ³	Dissolved ethane ³		

NOTES

Contaminants of Concern (italics) defined in ROD (US EPA 2001b)

¹ Project action limit defined by Clean-Up levels designated in ROD (US EPA 2001b)

² Project action limit defined by Clean-Up levels designated in FS (O'Brien & Gere, 2001a)

³ Monitored Natural Attenuation (MNA) Parameters

TABLE 2: CONTAMINANTS OF CONCERN AND OTHER TARGET ANALYTES (CONT'D)

Medium/Matrix: Leachate and Groundwater

Alkalinity Ammonia

Chemical Oxygen

Demand

Specific Conductivity Hardness (Metals)

рН

Total Sulfate Chloride Nitrate

Total Dissolved Solids Total Suspended Solids

Medium/Matrix: Sediment

Chloromethane

Benzo(a)anthracene	Arochlor-1254	Aluminum
Benzo(b)fluoranthene	Gamma-chlordane	Antimony
Benzo(a)pyrene	4, 4'-DDE	Arsenic
Indeno(1,2,3-cd)pyrene	4, 4'-DDT	Barium
Phenanthrene	Endosulfan II	Beryllium
Pyrene	Endrin	Chromium
Cobalt	Lead	Vanadium
Copper	Manganese	Zinc
Iron	Nickel	

Medium/Matrix: Leachate Seeps/Surface Water

1,2-Dichloropropane	Bromodichloromethane	Aluminum
Acetone	Chloroethane	Barium
Carbon disulfide	Chloroform	Copper
Methylene chloride	2,4-Dimethylphenol	Iron
Xylenes	Bis(2-	Cadmium
	ethylhexyl)phthalate	
Phenol	Lead	Zinc
Chlorobenzene	Manganese	Copper
1,1,-Dichloroethane	Zinc	Chromium
Hardness (Metals)	4, 4'-DDE	4, 4'-DDT
Arochlor-1254		

Benzene

Arsenic

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Barkhamsted - New Hartford Landfill

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanup (µg/L)		< 0.5 0	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	< 2	< 10	< 10
MW-1S	MW 1S		ļ	5 75 0	NC	NC	NCI	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
14144 15	5/5/03	<0.4	<0.4	4.29	<12	<1.2	<9.6	10.5	8.35	<0.4	< 0.4	<0.4	< 0.4	9.84	< 0.4	<0.4	9.3	803	<21.4
	8/12/03	< 0.4	<0.4	4.75	<12	<1.2	<9.6	13.7	9.17	< 0.4	< 0.4	< 0.4	< 0.4	8.91	< 0.4	< 0.4	<45.5	663	<148.4
	11/4/03	< 0.4	< 0.4	3.97	<2	0.88 J	11 J	11	3.97	< 0.4	< 0.8	< 0.4	0.21 J	11.1	< 0.4	< 0.4	<5.8	<4	<2.2
	2/26/04	<1.0	<1.0	4.2	<25.0	<10.0	<25.0	11.5	5.9	<1.0	<2.0	<1.0	< 5.0	8.7	<1.0	<1.0	<6.6	630	<2.6
	6/16/04	<6.4	<3.6	<7.2	<64	<96	<184	<2.8	<15.2	<6.4	<4.4	< 5.2	<6.4	<6.4	<7.2	<16	<2.0	530	<9.2
	9/1/04	< 0.64	< 0.36	5.6	<6.4	<9.6	<18.4	12	2.8	< 0.64	< 0.44	< 0.52	< 0.64	7.3	< 0.72	<1.6	<2.0	390	<9.2
	11/16/04	0.67	0.64	4.8	<3.2	<4.8	<9.2	11	3.6	< 0.32	< 0.22	< 0.26	< 0.32	6.8	< 0.36	< 0.8	<2.0	450	<9.2
	4/18/05	0.53	< 0.18	4.5	<3.2	<4.8	<9.2	9.9	8.1	< 0.32	< 0.22	< 0.26	< 0.32	12	< 0.36	< 0.8	<40	600	<184
	10/24/05	<3.2	<1.8	6.1 J	<32	<48	<92	12	<7.6	<3.2	<2.2	<2.6	<3.2	9	<3.6	<8	<2.2	360	<10.2
	4/18/06	< 0.34	< 0.68	4.3	<7.6	<4	<15.2	8.0	< 0.88	< 0.6	<2	< 0.34	<2	7.8	< 0.76	< 0.9	<3.8	200	< 5.8
	10/31/06	<2.0	< 2.0	<2	<20	<20	<26	10	<2.2	<1.88	<2.6	<1.0	3.2 J	5.6	<2.0	<2.0	<5	140	<4.4
	4/17/07	<2.0	< 2.0	<2	<20	<20	<26	8.5	<2.2	<1.88	<2.6	<1.0	<1.98	5.1	<2.0	<2.0	3.6 J	260	<4.4
	10/16/07	<4	<4	3.8 J	<16.2	<9.8	<46	8.7 J	<4	<4	<4	<4	<4	5.2 J	<4	<4	< 5.2	310	<2.4
	4/22/08	<10	<10	<10	<100	<100	<400	7.9 J	<8	<10	<6	<5.0	<20	<10	<10	<5.0	<6.4	160	<4.6
MW-4S																			
	5/5/03	< 0.4	< 0.4	1.43	<12	<1.2	<9.6	6.17	4.11	< 0.4	< 0.4	< 0.4	<0.4	1.41	< 0.4	< 0.4	4 J	< 50	<19.6
8/29/2008	8/12/03	<0.4	<0.4	1.36	<12	<1.2	<9.6	6.39 Page	7.45 1 of 25	<0.4	<0.4	<0.4	0.2 J	1.98	<0.4	<0.4	<6.5	<54.3	<21.4

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Barkhamsted - New Hartford Landfill

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.5 0	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	<0.5	<1	<2	< 10	<10
M CLs □ µg/L)□ MW-4S	<u> </u>	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
W -43	11/4/03	< 0.4	<0.4	1.11	<2	<1.6	5.87 J	6.11	6.47	<0.4	<0.8	- 0.4	0.26 J	4.38	<0.4	< 0.4	<5.8	<4	<2.2
	6/15/04	0.68	0.61	1.4	<3.2	<4.8	<9.2	6.2	6.0			<0.26		1.7	<0.36	<0.8	<2.0	6.4 J	<9.2
	4/19/05	< 0.32	< 0.18	0.79 J	<3.2	<4.8	<9.2	3.0	0.88 J					<0.32		<0.8	<2.0	<8.2	<9.2
	10/24/05	< 0.32	<0.18	0.83 J	<3.2	<4.8	<9.2	3.3	< 0.76					<0.32		<0.8	<2	<8.2	<9.2
	4/18/06	<4.2	<8.6	<8.2	<94	<52	<190	<7.2	<11.2	<7.6	<26	<4.4	<26	<25		<11.2	<2.8	<3.6	<4.2
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	2.5	<1.08	< 0.94		<0.50		<1.0	<1.0	<1.0	<5.4	<4	<4.8
	10/16/07	<4	<4	<4	<16.2	<9.8	<46	<4	<4	<4	<4	<4	<4	<4	<4	<4	<5.2	<3.2	<2.4
	4/22/08	<10	<10	<10	<100	<100	<400	<10	<8	<10	<6	< 5.0	<20	<10	<10	<5.0	<6.2	<5.4	<4.4
MW-4R																			
	4/22/08	< 5.0	< 5.0	< 5.0	<50	< 50	<200	< 5.0	<4	< 5.0	<3	<2.5	<10	< 5.0	<5.0	<2.5	<6.4	3.4 J	<4.6
MW-5S																			
	5/7/03	< 0.4	<0.4	0.64 J	<12	<1.2	<9.6	1.55	1.86 J	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<6.4	<53.2	<20.8
	8/14/03	< 0.4	< 0.4	0.47 J	<12	<1.2	<9.6	1.28	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.3	21.1 J	<5.4
	11/6/03	< 0.4	<0.4	0.38 J	<2	<1.6	<1.6	1.01	4.5	< 0.4	< 0.8	< 0.4	< 0.4	15.4	< 0.4	< 0.4	< 5.8	5.1 J	<2.2
	2/26/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	2.1	3.2	<1.0	<2.0	<1.0	< 5.0	1.2	<1.0	<1.0	<5.8	12 J	<2.2

8/29/2008 Page 2 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	oethane	.2-Dichloropropane	4-Dichlorobenzene		-Methyl-2-Pentanone			ne		hane	ibromochloromethane	Chloride		hene	ide	is(2-Ethylhexyl)phthalate	ylphenol	Dimethylphenol
		,2-Dichloroethane	,2-Dichlor	,4-Dichlor	-Butanone	-Methyl-2-	cetone	enzene	hloroethane	hloroform	hloromethane	ibromoch	ethylene	oluene	richloroethene	inyl Chloride	is(2-Ethylk	,4-Dimethylphenol	& 4 Dime
ROD Cleanu	ıp (μg/L)	<0.50	< 0.5	<10	<10	<5	< 10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	<0.5	<1	<2	< 10	< 10
M CLs I µg/L)I		5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5	5	2	6INC	NC
MW-5S	•		•	•	•	-	•	•	-	•	-	-	-	-	-			•	•
	6/16/04	0.51	< 0.18	0.99 J	<3.2	<4.8	<9.2	2.3	2.1	< 0.32	< 0.22	< 0.26	< 0.32	0.50	< 0.36	< 0.8	<2.0	<8.2	<9.2
	9/2/04	0.56	< 0.18	1.3	<3.2	<4.8	<9.2	3.2	3.4	< 0.32	< 0.22	< 0.26	< 0.32	0.64	< 0.36	< 0.8	<2.0	8.9 J	<9.2
	11/17/04	0.55	< 0.18	1.3	<3.2	<4.8	<9.2	3.1	2.5	< 0.32	< 0.22	< 0.26	< 0.32	0.68	< 0.36	<0.8	<2.0	9.1 J	<9.2
	4/19/05	< 0.32	< 0.18	1.2	<3.2	<4.8	<9.2	2.5	1.6	< 0.32	< 0.22	< 0.26	< 0.32	0.51	< 0.36	<0.8	<2.0	3.7 J	<9.2
	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	< 9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/19/06	< 0.166	< 0.34	0.85 J	<3.8	<2	<7.6	2.0	1.3 J *	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.4	<4	<4.8
	4/19/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	10/17/07	<2	<2	<2	<8.2	<5	<24	3.5 J	<2	<2	<2	<2	<2	<2	<2	<2	<5	5.6 J	<2.4
	4/23/08	<5.0	<5.0	<5.0	<50	<50	<200	<5.0	<4	<5.0	<3	<2.5	<10	<5.0	<5.0	<2.5	<6.2	<5.4	<4.4
MW-5B																			
	5/6/03	< 0.4	< 0.4	<9.4	<12	<1.2	<9.6	1.1	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.67 J	< 0.4	<7	<58.1	<22.8
	8/14/03	< 0.4	< 0.4	<7.2	<12	<1.2	<9.6	1.22	< 0.8	< 0.4	<0.4	< 0.4	< 0.4	< 0.4	0.8 J	0.41 J	<6	<12.4	< 5.2
	11/6/03	< 0.4	< 0.4	0.2 J	<2	<1.6	<1.6	0.69 J	< 0.4	< 0.4	<0.8	< 0.4	<0.4	< 0.4	0.58 J	0.23 J	<5.8	<4	<2.2
	2/26/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2
	6/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	1.1	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	0.72	<0.8	<2.0	<8.2	<9.2
8/29/2008	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	1.0 Page 3	0.87 J	< 0.32	<0.22	< 0.26	< 0.32	< 0.32	0.56	< 0.8	<2.0	<8.2	<9.2

8/29/2008 Page 3 of 25

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	< 10	< 10
MW-5B	J	5	<u> </u>	5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
1.1.1. 51	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.91	< 0.76	< 0.32	<0.22	<0.26	< 0.32	< 0.32	0.53	<0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.61	0.65 J			< 0.26			0.62	<0.8	<2.0	<8.2	<9.2
	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	1.3	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	0.82	<0.8	<2	<8.2	<9.2
	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	<0.174	<1	<1	<0.38	<0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	0.78 J	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.4	<4	<4.8
	4/19/07	<1.0	<1.0	<1.0	<10	<10	<13	0.81 J	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	10/17/07	<2	<2	<2	<8.2	<5	<24	<2	<2	<2	<2	<2	<2	<2	<2	<2	<6	<3.6	<2.8
	4/23/08	<5.0	<5.0	<5.0	<50	<50	<200	<5.0	<4	<5.0	<3	<2.5	<10	<5.0	<5.0	<2.5	<6.2	<5.4	<4.6
S-3																			
	5/2/03	< 0.4	< 0.4	0.96 J	<12	<1.2	<9.6	1.57	1.65 J	< 0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	<6	< 50	<19.6
	8/12/03	< 0.4	< 0.4	0.97 J	<12	<1.2	<9.6	1.66	2.49	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.5	<53.8	<21
	8/14/03	< 0.4	<0.8	0.89 J	<8.8	<6.8	<10	1.71	1.2 J	< 0.4	< 0.4	<0.8	<0.8	0.24 J	< 0.4	< 0.8	<6	<50	<19.6
	11/4/03	< 0.4	< 0.4	0.83 J	<2	<1.6	<1.6	1.2	2	< 0.4	< 0.8	< 0.4	< 0.4	0.46 J	< 0.4	< 0.4	<5.8	<4	<2.2
	2/26/04																<5.8	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0			
	6/15/04	0.91	0.54	2.3	<3.2	<4.8	<9.2	3.0	3.2	< 0.32	< 0.22	< 0.26	< 0.32	0.60	< 0.36	< 0.8	<2.0	<8.2	<9.2
8/29/2008	6/17/04	<1.6	<0.9	<1.8	<16	<24	<46	<0.7 Page 4	<3.8 4 of 25	<1.6	<1.1	<1.3	<1.6	<1.6	<1.8	<4	<2.0	11	<9.2

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	< 10	< 10
M CLs u µg/L)I S-3	<u>, </u>	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
5 3	8/31/04	0.82	< 0.18	2.3	<3.2	<4.8	<9.2	3.1	4.1	< 0.32	<0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				< 0.8	<2.0	<8.2	<9.2
	11/16/04	0.50	< 0.18	1.6	<3.2	<4.8	<9.2	2.0	2.4	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/18/05	< 0.32	< 0.18	1.1	<3.2	<4.8	<9.2	1.2	2.3	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	10/24/05	< 0.32	< 0.18	0.52 J	<3.2	<4.8	<9.2	0.55	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	1.6	<3.8	<2	<7.6	1.5	1.8 J *	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	0.76 J	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.4	<4	<4.8
	4/17/07	<1.0	<1.0	<1.0	<10	<10	<13	0.89 J	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.6	<4.2	<4.8
	10/16/07	<2	<2	2.1 J	<8.2	<5	<24	1.7 J	<2	<2	<2	<2	<2	<2	<2	<2	<5	<3	<2.4
	4/22/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.2	< 5.4	<4.4
MW-101S	5.15.100	40	40	11.0	1200	120	0.60	40	0.0	40	40	40	40	12000	40	40		1050	04.
	5/7/03	<40	<40	11.2	<1200	<120	<960	<40	<80	<40	<40	<40	<40	12000		<40	<6.6	1070	86.7
	8/15/03	<40	<40	9.5 J	<1200	<120	<960	<40	<80	<40	<40	<40	<40	10400	<40	<40	13.1	<53.8	63.1
	11/6/03	<0.4	1.34	14.8	26.1	57.3	33.3	14	3.34	<0.4	<0.8		1.16 J		<0.4	<0.4	<5.8	<4 71 0	130
	6/17/04	<32	<18	<36	<320	<480	<920	<14	<76	<32	<22	<26	<32	2700	<36	<80	<2.0	710	<9.2
	9/2/04	<6.4	<3.6	12 J	<64	<96	<184	12	<15.2	<6.4	<4.4	<5.2	<6.4	970	<7.2	<16	5.4	730	<9.2
8/29/2008	11/18/04	<3.2	<1.8	14	<32	<48	<92	12 Page 5	<7.6 of 25	<3.2	<2.2	<2.6	<3.2	440	<3.6	<8	<2.0	580	<9.2

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.5□	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	<2	<10	< 10
MW-101S]	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
WW-1013	4/20/05	<6.4	<3.6	<7.2	<64	<96	<184	<2.8	<15.2	<6.4	<4.4	<5.2	<6.4	540	<7.2	<16	<4.0	1300	<18.4
	10/26/05	<1.6	<0.9	2.8 J	<16	<24	<46	5	<3.8	<1.6	<1.1	<1.3	<1.6	40	<1.8	<4	<2 <2	19	<9.2
	4/20/06	<1.66	<3.4	2.6 J 14	<38	<20	<76	13	<4.4	<3	<10	<1.74	<10	680	<3.8	<4.4	<2.8	640	<4.2
	11/2/06	<10	<10	13	<100	<100	<130	9.0 J	<10.8	<9.4	<12.6		<9.8	31	<10	<10	<4.8	830	<4.2
	4/19/07	<10	<10	<10	<100	<100	<130	9.0 J 10	<10.8	<9.4	<12.6	<5.0	<9.8	60	<10	<10	<5	810 *	<4.2 <4.4
	10/18/07	<4	<4	16	<16.2	<9.8	<46	11	<4	<4	<4	<4	<4	39	<4	<4	<5	810	<2.4
	4/24/08	<5.0	<5.0	<5.0	<50	<50	<200	5.4	<4	<5.0	<3	<2.5	<10	33	<5.0	<2.5	<62	1000	<44
	4/24/06	<3.0	<3.0	<3.0	<30	<30	<200	3.4	< 4	<5.0	<3	<2.3	<10	33	<5.0	<2.3	<02	1000	<44
MW-101I																			
	5/8/03	< 0.4	< 0.4	<10	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	9.2	<62.5	<24.4
	6/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/20/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/21/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<3	<4	<4.6
	4/25/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	<0.6	<0.50	<2	<1.0	<1.0	< 0.50	<6.8	<5.8	<4.8
MW-101B																			
	5/7/03	<0.4	<0.4	0.57 J	<12	<1.2	<9.6	0.95 J	<0.8	<0.4	< 0.4	<0.4	<0.4	1.87	<0.4	<0.4	<6.1	<51	<20

8/29/2008 Page 6 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	< 10	<10
M CLs ū µg/L) I MW-101B	<u> </u>	5		5 75 0	NC	NC	NC	5 □	NC	NC	NC	NC	5	1000	5)	2	6INC	NC
WW TOTA	8/28/03	<0.4	< 0.4	0.45 J	27.8	<1.2	<9.6	1.34	< 0.8	<0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	< 0.4	<6	10.7 J	<5.2
	11/6/03	<0.4	< 0.4	0.41 J	<2	<1.6	<1.6	1.14	<0.4	< 0.4	< 0.8	<0.4		0.49 J	<0.4	< 0.4	<5.8	7.3 J	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	1.2	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	3.3 J	<2.2
	6/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.77	< 0.76	< 0.32	<0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	0.74 J	<3.2	<4.8	<9.2	1.4	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	2.6 J	<9.2
	11/18/04	< 0.32	< 0.18	0.50 J	<3.2	<4.8	<9.2	0.83	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	4/20/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.51	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	10/26/05	<3.2	<1.8	15	<32	<48	<92	13	<7.6	<3.2	<2.2	<2.6	<3.2	55	<3.6	<8	<2	1000	<9.2
	4/20/06	< 0.166	< 0.34	0.69 J	<3.8	<2	<7.6	0.97 J	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	11/2/06	< 5.0	< 5.0	< 5.0	< 50	< 50	<64	< 5.0	< 5.4	<4.6	<6.2	<2.5	<5	< 5.0	< 5.0	< 5.0	<4.8	<3.6	<4.2
	4/19/07	< 5.0	< 5.0	< 5.0	< 50	< 50	<64	< 5.0	< 5.4	<9.4	<6.2	< 5.0	<9.8	16	< 5.0	< 5.0	<5.2	74 *	<4.6
	10/18/07	<4	<4	<4	<16.2	<9.8	<46	<4	<4	<4	<4	<4	<4	<4	<4	<4	<6	<3.6	<2.8
	4/24/08	<10	<10	<10	<100	<100	<400	<10	<8	<10	<6	< 5.0	<20	<10	<10	< 5.0	<6.2	<5.4	<4.4
MW-101D	5/8/03	<0.4	<0.4	<8	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<6	<50	<19.6

8/29/2008 Page 7 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	< 2	<10	< 10
MW-102S	ı j	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
WW 1025	5/1/03	< 0.4	<0.4	<9	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	11.4	<56.2	<22
	8/12/03	< 0.4	< 0.4	<9	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.7	<56.2	<22
	11/4/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	<0.4	<0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
	2/25/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<6	<4.2	<2.4
	6/15/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	8/31/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				<0.8	<4.0	<16.4	<18.4
	11/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/18/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				< 0.8	<2.0	<8.2	<9.2
	10/24/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26		< 0.32		<0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3		< 0.174		<1	< 0.38	<0.44	<2.8	<3.8	<4.4
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50		<1.0	<1.0	<1.0	<5.4	<4	<4.6
	4/17/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			<0.50		<1.0	<1.0	<1.0	<4.8	<3.6	<4.2
	10/16/07	<0.4	<0.4	<0.4	<1.62	<0.98	31 J	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<5	<3	<2.4
	4/22/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	<0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.4	<5.4	<4.6
MW-102B																			
14144 102 D	5/1/03	< 0.4	<0.4	0.85 J	<12	<1.2	<9.6	<0.4	2.17	<0.4	<0.4	< 0.4	0.44 J	1	1	2	<6.1	<51	<20
	8/12/03	<0.4	<0.4	0.73 J	<12	<1.2	<9.6	1.19	2.28	< 0.4	< 0.4		0.43 J		< 0.4	< 0.4	<6.6	<54.9	<21.6
8/29/2008				-				Page 8											

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	< 10	<10
MW-102B	<u> </u>	5		5 75 0	NC	NC	NC	5 □	NC	NC	NC	NC	5	1000	5		2	6INC	NC
1,1,1,102B	11/4/03	0.61 J	< 0.4	0.63 J	<2	<1.6	<1.6	1.02	1.72 J	< 0.4	<0.8	< 0.4	0.42 J	< 0.4	< 0.4	< 0.4	<5.8	<4	<2.2
	2/25/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2
	6/15/04	0.80	< 0.18	0.86 J	<3.2	<4.8	<9.2	0.99	2.0	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	8/31/04	< 0.32	< 0.18	0.53 J	<3.2	<4.8	<9.2	0.59	1.5	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	11/16/04	0.53	< 0.18	0.74 J	<3.2	<4.8	<9.2	0.81	1.7	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/18/05	0.56	< 0.18	0.68 J	<3.2	<4.8	<9.2	0.71	2.5	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	10/24/05	< 0.32	< 0.18	0.63 J	<3.2	<4.8	<9.2	0.67	1	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.8	<4.4
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	< 5.6	<4.2	<4.8
	4/17/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<4.8	<3.6	<4.2
	10/16/07	0.25 J	< 0.4	0.36 J	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.2	<3.2	<2.4
	4/22/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.6	< 5.6	<4.8
MW-103S																			
	5/1/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	<0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4	9.7	<50	<19.6
	8/13/03	< 0.4	< 0.4	<8.8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.6	<54.9	<21.6
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	<0.4	< 0.4	<0.4	< 5.8	<4	<2.2
	2/26/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	< 5.8	<4	<2.2
8/29/2008								Page 9	of 25										

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1 NC	< 0.5	<1 NC	< 0.5	< 2	< 0.5	< 0.5	<1	< 2	< 10	< 10
MW-103S	J	5		5 75 0	NC	NC	NC	5 □	NC	NC	NC	NC	5	1000	5		2	6INC	NC
1.1 1000	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	8/31/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/18/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	10/27/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	<0.44	<2.8	<3.8	<4.4
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.6	<4.2
	4/19/07	<5.0	< 5.0	< 5.0	<50	<50	<64	< 5.0	< 5.4	<4.6	<6.2	<2.5	<5	< 5.0	< 5.0	< 5.0	<5.2	<3.8	<4.6
	10/17/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5.4	<3.4	<2.6
	10/18/07	<0.4	<0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	<6	<3.6	<2.8
	4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	<0.6	< 0.50	<2	<1.0	<1.0	<0.50	<6.4	<5.4	<4.6
MW-103B																			
	5/1/03	< 0.4	< 0.4	<8.2	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	5.9 J	<51	<20
	8/13/03	< 0.4	< 0.4	<8.6	<12	<1.2	<9.6	0.25 J	< 0.8	< 0.4	< 0.4	< 0.4	0.62 J	< 0.4	< 0.4	< 0.4	16.3	<53.8	<21
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	0.22 J	< 0.4	< 0.4	< 0.8	<0.4	0.6 J	<0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
8/29/2008	2/26/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0 Page 1	<2.0 0 of 25	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	<2	< 10	< 10
MW-103B	1	5	<u> </u>	5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
WW 103B	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	<0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	8/31/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				<0.8	<2.0	<8.2	<9.2
	11/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/18/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	10/27/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	< 5.4	<4	<4.6
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	3.7 J * B	<4	<4.6
	10/17/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.6	<3.4	<2.6
	4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	<0.6	< 0.50	<2	<1.0	<1.0	<0.50	<6.2	<5.4	<4.6
MW-104S																			
	5/5/03	< 0.4	<0.4	<8.2	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4	<0.4	<6.1	<51	<20
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
	6/15/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	< 2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	< 2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
8/29/2008	10/26/05	< 0.32	<0.18	< 0.36	<3.2	<4.8	<9.2	<0.14 Page 1	<0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

			1		1			1				1						1	1
Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu	ıρ (μg/L)	<0.5□	< 0.5	<10	< 10	< 5	<10	< 0.5	<1	< 0.5	< 1	< 0.5	< 2	< 0.5	< 0.5	< 1	< 2	< 10	< 10
M CLs I µg/L)I	1	5		5 75 0	NC	NC	NC	5 □	NC	NC	NC	NC	5	1000	5		2	6INC	NC
MW-104S																			
	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<4.8	<3.6	<4.2
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	< 5.4	<4	<4.6
	10/17/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5.8	<3.6	<2.8
	4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	<0.6	<0.50	<2	<1.0	<1.0	<0.50	<6.6	<5.6	<4.8
MW-104I																			
	5/5/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6	< 50	<19.6
	6/15/04	< 0.32	<0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	<0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	2.2	<8.2	<9.2
MW-104B																			
	5/5/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4	4.4 J	<50.5	<19.8
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5.8	<4	<2.2
	6/15/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				< 0.8	<2.0	<8.2	<9.2
	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32						< 0.8	<2	<8.2	<9.2

8/29/2008 Page 12 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

	Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
	ROD Cleanu		<0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	<10	<10
	₁ CLs u µg/L) u MW-104B		5	<u> </u>	5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
-	WIW-104B	4/19/06	<0.166	< 0.34	< 0.32	<3.8	<2	<7.6	<0.28	<0.44	< 0.3	<1	<0.174	<1	<1	<0.38	<0.44	<2.8	<3.6	<4.2
		11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	3.8 J	<3.8	<4.4
		4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50		<1.0	<1.0	<1.0	4.6 J	<3.8	<4.4
		10/17/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	13	<3.2	<2.4
		4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.4	<5.6	<4.6
	MW-105S	8/13/03	<0.4	<0.4	<8	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<6	<50	<19.6
	MW-105B	8/13/03	<0.4	<0.4	<7.2	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	4.1 J	<12.6	<5.2
	MW-106S																			
		5/2/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	7.1	< 50	<19.6
		8/12/03	< 0.4	< 0.4	<11.2	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	<8.3	<69.4	<27.2
		11/4/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	0.47 J	< 0.8	< 0.4	< 0.4	0.82 J	< 0.4	< 0.4	< 5.8	<4	<2.2
		2/26/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2

8/29/2008 Page 13 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.5□	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	< 2	< 10	<10
MCLs I µg/L)I]	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
MW-106S	6/15/04 9/1/04 11/16/04 4/18/05 10/24/05 4/18/06 10/31/06 4/17/07 10/16/07 4/22/08	<0.32 <0.32 <0.32 <0.32 <0.32 <0.166 <1.0 <1.0 <0.4 <1.0	<0.18 <0.18 <0.18 <0.18 <0.18 <0.34 <1.0 <1.0 <0.4	<0.36 <0.36 <0.36 <0.36 <0.32 <1.0 <1.0 <0.4	<3.2 <3.2 <3.2 <3.2 <3.2 <3.8 <10 <10 <1.62 <10	<4.8 <4.8 <4.8 <4.8 <4.8 <4.8 <1.0 <10 <10 <0.98 <10	<9.2 <9.2 <9.2 <9.2 <9.2 <7.6 <13 <13 <4.6 <40	<0.14 <0.14 <0.14 <0.14 <0.28 <1.0 <1.0 <0.4	<0.76 <0.76 <0.76 <0.76 <0.44 <1.08 <1.08 <0.4 <0.8	<0.32 <0.32 <0.32 <0.32 <0.3 <0.94	<0.22 <0.22 <0.22 <0.22 <1 <1.26	<0.26 <0.26 <0.26 <0.26 <0.26 <0.174 <0.50 <0.50 <0.4	<0.32 <0.32 <0.32 <0.32 <1 <0.98	<0.32 <0.32 <0.32	<0.36 <0.36 <0.36	<0.8 <0.8 <0.8 <0.8 <0.8 <0.44 <1.0 <1.0 <0.4 <0.50	<2.0 <2.0 <2.0 <2000 <2 <2.8 <4.8 <5.2 <5 <6.4	<8.2 <8.2 <8.2 <8200 <8.2 <3.6 <3.6 <3.8 <3	<9.2 <9.2 <9.2 <9200 <9.2 <4.2 <4.2 <4.4 <2.4 <4.6
MW-108B	8/13/03	<0.4	<0.4	<8.6	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	8.6	<53.8	<21
	8/12/03	< 0.4	<0.4	<8	<12	<1.2	<9.6	<0.4	<0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<6	<50	<19.6

8/29/2008 Page 14 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Locatio	Sample on Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
	eanup (µg/L)	<0.5□	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	< 1	< 2	<10	< 10
M CLs u MW-11		5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5)	2	6INC	NC
1/1// 11	5/5/03	< 0.4	<0.4	0.35 J	<12	<1.2	<9.6	0.78 J	1.17 J	< 0.4	<0.4	< 0.4	<0.4	<0.4	< 0.4	<0.4	7.3	<50.5	<19.8
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.53	0.76 J	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	0.55 J	< 0.44	< 0.3	<1	< 0.174	<1	<1	<0.38	< 0.44	<2.8	<3.6	<4.2
	4/24/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.2	< 5.4	<4.6
MW-11	1S 5/7/03 8/14/03	<0.4 <0.4	<0.4 <0.4	<8 <7.4	<12 <12	<1.2 <1.2	<9.6 <9.6	<0.4 <0.4	<0.8 <0.8	<0.4 <0.4	<0.4 <0.4	<0.4 <0.4	<0.4 <0.4	<0.4	<0.4	<0.4 <0.4	<6.1 <6.2	<50.5 <12.8	<19.8 <5.4
	11/6/03	<0.4	<0.4	<0.4	<12 <2	<1.6	<9.6 <1.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.2	<12.8	<3.4
	11/7/03					<1.0 	<1.0 				<0.6						<5.8	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	<5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2
	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26		< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/20/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
9/20/2009	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.6	<4.2
8/29/2008								Page 1	3 OI 23										

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	2-Dichloroethane	2-Dichloropropane	4-Dichlorobenzene	ione	-Methyl-2-Pentanone	a	e	hloroethane	orm	hloromethane	ibromochloromethane	ethylene Chloride	4)	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	4-Dimethylphenol	4 Dimethylphenol
		,2-Dic	,2-Dic	,4-Dic	-Butanone	-Meth	cetone	enzene	hloro	hloroform	hloro	ibron	ethyle	oluene	richlo	inyl C	is(2-Et	,4-Din	& 4 D
ROD Cleanu	ın (µg/L)	<0.5□	< 0.5	< 10	<10	< 5	< 10	<0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	<0.5	<1	< 2	<10	<10
M CLs $\mathbf{I}\mu$ g/L) \mathbf{I}		5	10.5	5 75 0	NC	NC	NC	50	NC	NC	NC	NCI	5	1000	5		2	6INC	NC
MW-111S			•	-	•	_	_	_	•	•	•		•	•		•		<u> </u>	•
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	< 5.2	<3.8	<4.6
	10/18/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5	<3	<2.4
	4/24/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.4	< 5.4	<4.6
MW-111I																			
	5/7/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	1.02	4.29	< 0.4	< 0.4				0.88 J	< 0.4	<6	<50	<19.6
	8/15/03	< 0.4	< 0.4	<7.8	<12	<1.2	<9.6	0.87 J	3.57	< 0.4	< 0.4		0.29 J		0.84 J	< 0.4	17.2	<13.4	< 5.6
	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.69	3.5	< 0.32		< 0.26				<0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.53	2.7	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	0.64	<0.8	<2.0	<8.2	<9.2
	4/20/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	2.2 *	< 0.3	<1	< 0.174	<1	<1	< 0.38		<2.8	<3.6	<4.2
	4/24/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	1.4 J *	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.6	< 5.8	<4.8
MW-111B																			
	5/7/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	0.45 J	1.92 J	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.8 J	< 0.4	<6	< 50	<19.6
	8/14/03	< 0.4	< 0.4	<7.2	<12	<1.2	<9.6	0.55 J	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	1.12	< 0.4	<6.1	<12.6	< 5.2
	11/6/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	0.29 J	1.57 J	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	0.7 J	< 0.4	<5.8	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	< 5.8	<4	<2.2

8/29/2008 Page 16 of 25

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	< 2	<10	< 10
MW-111B	J	5	<u> </u>	5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
14144 111D	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	<0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	2.1			< 0.26			1.0	<0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	1.9	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	1.2	< 0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.60	2.2	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	1.4	<0.8	<2.0	<8.2	<9.2
	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.7	3.1	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	1.6	<0.8	<2	<8.2	<9.2
	4/20/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	1.6 J *	< 0.3	<1	< 0.174	<1	<1	0.84 J	< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	0.88 J *	< 0.94	<1.26	< 0.50	< 0.98	<1.0	0.85 J	<1.0	<4.8	<3.6	<4.2
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	10/18/07	<0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.39 J	< 0.4	<5	<3	<2.4
	4/24/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.4	< 5.4	<4.6
MW-112S																			
14144 1125	5/6/03	< 0.4	<0.4	<8.2	<12	<1.2	<9.6	<0.4	<0.8	< 0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	<0.4	<6.2	<51.5	<20.2
	8/13/03	<0.4	<0.4	<7.4	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	6.8	<12.6	<5.4
	11/5/03	<0.4	<0.4	< 0.4	<2	<1.6	<1.6	<0.4	<0.4	< 0.4	< 0.8	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5.8	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2
	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	9/1/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
8/29/2008								Page 1	7 of 25										

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	< 10	< 10
MW-112S	ı İ	5	<u> </u>	5 75 0	NC	NC	NC	5 □	NC	NC	NC	NC	5	1000	5	<u> </u>	2	6INC	NC
17177 1120	11/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	<0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	4/18/05	< 0.32	<0.18	< 0.36	<3.2	<4.8	<9.2	<0.14	< 0.76			<0.26				<0.8	<2.0	<8.2	<9.2
	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	<0.174	<1	<1	<0.38	< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.2	<3.8	<4.6
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.2	<3.8	<4.4
	10/17/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	0.38 J	<0.4	< 0.4	< 0.4	< 0.4	<0.4	< 5.4	<3.2	<2.6
	4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	<0.6	<0.50	<2	<1.0	<1.0	<0.50	<6.2	<5.4	<4.4
MW-112B																			
	5/5/03	< 0.4	< 0.4	<8.4	<12	<1.2	<9.6	< 0.4	< 0.8	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.3	<52.6	<20.6
	8/13/03	< 0.4	< 0.4	<7.4	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.1	<12.6	< 5.4
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	<0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2
	6/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	9/1/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
8/29/2008	4/18/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	<0.14 Page 1	<0.76 8 of 25	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	<0.36	<0.8	<2.0	<8.2	<9.2

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	<2	< 10	< 10
MW-112B	J	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
11111 1120	10/26/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	<0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3		< 0.174	<1	<1		< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	<0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	<0.98	<1.0	<1.0	<1.0	<4.8	<3.6	<4.2
	10/17/07	<0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	< 0.4	< 0.4	<5	<3	<2.4
	4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	<0.6	< 0.50	<2	<1.0	<1.0	<0.50	<6.4	<5.4	<4.6
MW-113S																			
	5/6/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	<6.1	<50.5	<19.8
	8/14/03	< 0.4	< 0.4	<7.4	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.1	<12.6	< 5.4
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	< 5.8	<4	<2.2
	6/18/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	10/27/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2
8/29/2008	4/20/06	<0.166	< 0.34	< 0.32	<3.8	<2	<7.6	<0.28 Page 19	<0.44 9 of 25	< 0.3	<1	<0.174	<1	<1	<0.38	<0.44	<2.8	<3.6	<4.2

Table 4 **Summary of Historical Groundwater VOCs and SVOCs Results** Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	< 2	< 0.5	< 0.5	<1	<2	< 10	<10
MW-113S	J	5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
1,11,11135	11/2/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	<0.98	<1.0	<1.0	<1.0	<5.2	<3.8	<4.4
	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50		<1.0	<1.0	<1.0	<5.4	<4	<4.6
	10/18/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5.4	<3.2	<2.6
	4/24/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	<0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.6	<5.6	<4.8
MW-113B																			
	5/5/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6	< 50	<19.6
	8/28/03	< 0.4	< 0.4	<7.2	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	<0.4	<6	<12.4	<5.2
	11/5/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	0.78 J	< 0.4	< 0.4	17	<4	<2.2
	2/27/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	< 5.8	<4	<2.2
	6/18/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	3.3	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	10	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				<0.8	<2.0	<8.2	<9.2
	10/27/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76		< 0.22	< 0.26	< 0.32	< 0.32			<2	<8.2	<9.2
	4/20/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3		< 0.174		<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	11/2/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50		<1.0	<1.0	<1.0	4.7 J	<3.8	36
8/29/2008	4/18/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0 Page 2	<1.08 0 of 25	<0.94	<1.26	<0.50	<0.98	5.6	<1.0	<1.0	7.5 J	<4	<4.6

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1 NC	< 0.5	<1 NC	< 0.5	< 2	< 0.5	< 0.5	<1	< 2	< 10	<10
MW-113B	ı İ	5	<u> </u>	5 75 0	NC	NC	NC	5 □	NC	NC	NC	NC	5	1000	5		2	6INC	NC
MW-113B	4/24/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	<0.6	<0.50	<2	<1.0	<1.0	<0.50	6.9 J	<5.4	<4.6
MW-115S																			
	5/2/03	< 0.4	< 0.4	<8.2	<12	<1.2	<9.6	< 0.4	<0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	7.6	<51	<20
	8/12/03	< 0.4	< 0.4	<8	<12	<1.2	<9.6	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6	<50	<19.6
	11/4/03	< 0.4	< 0.4	< 0.4	<2	<1.6	<1.6	< 0.4	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
	2/25/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	< 5.8	<4	<2.2
	6/15/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	8/31/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	4/18/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2.0	<8.2	<9.2
	10/24/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	<0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3	<1	< 0.174	<1	<1	< 0.38	< 0.44	<2.8	<3.6	<4.2
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<4.8	<3.6	<4.2
	4/17/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	10/16/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	<0.4	< 0.4	<0.4	<5	<3	<2.4
	4/22/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	<0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.2	<5.4	<4.4

8/29/2008 Page 21 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochlorometha	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phtha	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5 1	< 0.5	< 10 5 75 0	<10 NC	< 5 NC	<10 NC I	< 0.5	<1 NC	<0.5	<1 NC	<0.5	< 2 5	< 0.5 1000	< 0.5	<1	< 2 2	<10 6 I NC	<10 NC
MW-115B																			
	5/1/03	<0.4	<0.4	<8	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	6.6	<50	<19.6
	8/12/03	<0.4	<0.4	<8.6	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<6.4	<53.2	<20.8
	11/4/03	<0.4	<0.4	<0.4	<2	<1.6	<1.6	<0.4	<0.4	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	11 J	<4	<2.2
	2/25/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	<5.8	<4	<2.2
	6/15/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76		< 0.22					<0.8	<2.0	<8.2	<9.2
	8/31/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				<0.8	<2.0	<8.2	<9.2
	11/16/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				<0.8	<2.0	<8.2	180
	4/18/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76			< 0.26				<0.8	<2.0	<8.2	<9.2
	10/24/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26		< 0.32	< 0.36	<0.8	<2	<8.2	<9.2
	4/18/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	< 0.3		<0.174		<1		<0.44	<2.8	<3.6	<4.2
	10/31/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50		<1.0	<1.0	<1.0	<5	<3.8	<4.4
	4/17/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08	< 0.94	<1.26	< 0.50	< 0.98	<1.0	<1.0	<1.0	<5.2	<3.8	<4.4
	10/16/07	<0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<5	<3	<2.4
	4/22/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.4	< 5.6	<4.6

MW-117S

8/29/2008 Page 22 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.50	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	< 2	< 10	< 10
MW-117S	ı	5	<u> </u>	5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
WIW-11/3	8/13/03	<0.4	<0.4	<7.4	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	21.4	<12.6	<5.4
MW-117B	8/13/03	<0.4	<0.4	<7.2	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	118	<12.6	<5.2
MW-118S	8/13/03	<0.4	<0.4	<7.2	<12	<1.2	<9.6	<0.4	<0.8	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<6	<12.4	<5.2
MW-120S																			
	8/14/03	< 0.4	< 0.4	<7.2	<12	<1.2	<9.6	0.29 J	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<6.1	<12.6	< 5.2
	11/6/03	< 0.4	< 0.4	0.26 J	<2	<1.6	<1.6	0.33 J	0.84 J	< 0.4	< 0.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 5.8	<4	<2.2
	2/26/04	<1.0	<1.0	<1.0	<25.0	<10.0	<25.0	<1.0	<2.0	<1.0	<2.0	<1.0	< 5.0	<1.0	<1.0	<1.0	< 5.8	<4	<2.2
	6/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	0.78 J	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2.0	<8.2	<9.2
	10/27/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	< 0.36	< 0.8	<2	<8.2	<9.2

8/29/2008 Page 23 of 25

Table 4
Summary of Historical Groundwater VOCs and SVOCs Results
Only chemicals of concern are reported

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		< 0.5	< 0.5	< 10	< 10	< 5	<10	< 0.5	<1	< 0.5	<1	< 0.5	<2	< 0.5	< 0.5	<1	<2	< 10	< 10
MW-120S	ı	5	<u> </u>	5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC
10100	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	< 0.28	< 0.44	<0.3	<1	<0.174	<1	<1	<0.38	< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08		<1.26		< 0.98	<1.0	<1.0	<1.0	<5	<3.8	<4.4
	4/19/07	<5.0	< 5.0	< 5.0	<50	<50	<64	< 5.0	<5.4	<4.6	<6.2	<2.5	<5	< 5.0	< 5.0	< 5.0	<4.8	<3.6	<4.2
	10/17/07	< 0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	< 0.4	< 0.4	< 0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 5.4	<3.4	<2.6
	4/23/08	<1.0	<1.0	<1.0	<10	<10	<40	<1.0	< 0.8	<1.0	< 0.6	< 0.50	<2	<1.0	<1.0	< 0.50	<6.4	<5.4	<4.6
MW-120B																			
	8/14/03	< 0.4	< 0.4	<7.4	<12	<1.2	<9.6	0.78 J	1.27 J	< 0.4	< 0.4	< 0.4	0.39 J	< 0.4	3.35	< 0.4	<6.2	<12.8	< 5.4
	11/5/03	< 0.4	< 0.4	< 0.4	3.41 J	<1.6	<1.6	0.37 J	0.98 J	< 0.4	< 0.8	< 0.4	0.28 J	< 0.4	1.76	< 0.4	<5.8	<4	<2.2
	6/17/04	< 0.32	< 0.18	< 0.36	18	<4.8	<9.2	< 0.14	< 0.76	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	1.5	< 0.8	<2.0	<8.2	<9.2
	9/2/04	< 0.32	< 0.18	< 0.36	16	<4.8	<9.2	0.71	2.1	< 0.32	< 0.22	< 0.26	< 0.32	< 0.32	1.8	<0.8	5.8	<8.2	<9.2
	11/17/04	< 0.32	< 0.18	< 0.36	11	<4.8	<9.2	0.59	1.3			< 0.26			1.7	< 0.8	<2.0	<8.2	<9.2
	4/19/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.65	1.2			< 0.26			2.0	< 0.8	<2.0	<8.2	<9.2
	10/27/05	< 0.32	< 0.18	< 0.36	<3.2	<4.8	<9.2	0.7	1.3			< 0.26		< 0.32	2	< 0.8	<2	<8.2	<9.2
	4/19/06	< 0.166	< 0.34	< 0.32	<3.8	<2	<7.6	0.55 J	1.0 J *	< 0.3		< 0.174		<1	1.5	< 0.44	<2.8	<3.6	<4.2
	11/1/06	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50		<1.0	1.2	<1.0	<4.8	<3.6	<4.2
	4/19/07	<1.0	<1.0	<1.0	<10	<10	<13	<1.0	<1.08			< 0.50			0.67 J	<1.0	<5.2	<3.8	<4.4
9/20/2009	10/17/07	<0.4	< 0.4	< 0.4	<1.62	< 0.98	<4.6	0.52 J	0.89 J	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	1.1	< 0.4	<5.8	<3.4	<2.6

8/29/2008 Page 24 of 25

Barkhamsted - New Hartford Landfill

Well Location	Sample Date	,2-Dichloroethane	,2-Dichloropropane	,4-Dichlorobenzene	-Butanone	-Methyl-2-Pentanone	cetone	enzene	hloroethane	hloroform	hloromethane	ibromochloromethane	ethylene Chloride	oluene	richloroethene	inyl Chloride	is(2-Ethylhexyl)phthalate	,4-Dimethylphenol	& 4 Dimethylphenol
ROD Cleanu		<0.5□	< 0.5	< 10	< 10	< 5	< 10	< 0.5	<1	< 0.5		< 0.5	< 2	< 0.5	< 0.5	< 1	< 2	< 10	< 10
M CLs I µg/L)I		5		5 75 0	NC	NC	NC	5 0	NC	NC	NC	NC	5	1000	5		2	6INC	NC

MW-120B

4/23/08 <1.0 <1.0 <1.0 <1.0 <1.0 <40 <1.0 <0.8 <1.0 <0.6 <0.50 <2 <1.0 **0.99 J** <0.50 <6.2 <5.4 <4.4

Notes:

< = Non detected values presented as two times the MDL if a paramater has an MDL value and is not an inorganic compound, otherwise value is presented as the reporting limit (RL). Bolded value = A detected result

J = Reported result below RL, estimated value

MDL = Method detection limit

 μ g/L= Micrograms per liter

-- = Not analyzed

Well Depths: D

 $\overline{B} = Shallow bedrock$

D = Deep bedrock

I = Intermediate bedrock

R = Shallow bedrock

S = Overburden well

8/29/2008 Page 25 of 25

Barkhamsted - New Hartford Landfill

Well	Sample	Darkilali	isteu - New Hartioru L	anami	
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clean		0.005	0.050	0.003	0.050
MCLs I		0.010	0.10	0.015	NCI
MW-1S					
	05/05/2003	0.012	< 0.02	< 0.005	0.07
	08/12/2003	0.014	< 0.02	< 0.005	0.08
	11/04/2003	0.024	0.012	0.041	0.07
	02/26/2004	0.011	0.01 J	0.0031 J	0.067
	06/16/2004	< 0.005	0.006	0.004	0.071
	09/01/2004	0.008	< 0.005	< 0.003	0.052
	11/16/2004	0.01	< 0.005	< 0.005	0.058
	04/18/2005	0.008	< 0.005	< 0.005	0.064
	10/24/2005	0.015	0.007	< 0.005	0.057
	04/18/2006	0.022	0.009	< 0.001	0.055
	10/31/2006	0.024	0.0091	0.001	0.075
	04/17/2007	0.014	0.0038 J	0.00097 J	0.048
	10/16/2007	0.011	0.0032 J	< 0.001	0.05
	04/22/2008	0.0077 J	0.0016 J	0.0012	0.054
MW-4S					
	05/05/2003	0.012	< 0.02	< 0.005	6.46
	08/12/2003	0.01	< 0.02	< 0.005	6.55
	11/04/2003	0.014	0.0014 J	0.0078 J	6.5
	06/15/2004	0.009	0.0015 B	0.003 B	6
	04/19/2005	0.01	< 0.005	< 0.005	1.1
	10/24/2005	0.012	< 0.005	< 0.005	0.77
	04/18/2006	0.0085 J	0.0029 Ј	< 0.001	1
	10/31/2006	0.0076 J	0.0027 J	< 0.001	1.2
	10/16/2007	0.026	0.0025 J	0.0042	1.3
	04/22/2008	0.012	0.0007 J	0.0014	0.96
MW-4R					
	04/22/2008	0.007 J	0.0011 J	0.0021	4.6
	04/22/2006	0.007 J	0.0011 J	0.0021	7.0
MW-5S					
	05/07/2003	< 0.005	< 0.02	< 0.005	0.85
	08/14/2003	< 0.005	< 0.02	< 0.005	0.83
	11/06/2003	< 0.01	< 0.01	0.0026 J	0.98
	02/26/2004	< 0.01	< 0.01	0.006 J	0.81
	06/16/2004	< 0.005	< 0.005	< 0.003	0.97
	09/02/2004	< 0.005	< 0.005	< 0.003	0.79
	11/17/2004	< 0.005	< 0.005	< 0.005	0.7
	04/19/2005	< 0.01	< 0.005	< 0.005	1.2
	10/26/2005	< 0.001	< 0.005	< 0.005	0.73
	04/19/2006	0.038	0.0017 J	< 0.001	0.96
	11/01/2006	< 0.01	0.00067 J	< 0.001	0.89
	04/19/2007	< 0.01	< 0.005	< 0.001	0.56
	10/17/2007	< 0.01	0.0013 J	0.00046 J	1.8
	04/23/2008	< 0.01	< 0.005	0.00078 J	1.9
				-	

8/29/2008 Page 1 of 10

Barkhamsted - New Hartford Landfill

Well	Sample	Darkilali	isteu - New Hartioru L	unum	
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clean		0.005	0.050	0.003	0.050
MCLs 	mg/L) □	0.010	0.1	0.015□	NCI
MW-5B	05/06/2002	-0.005	.0.00	٠٠ ٥٥٠	2.54
	05/06/2003	<0.005	<0.02	< 0.005	3.54
	08/14/2003	< 0.005	<0.02	< 0.005	3.44
	11/06/2003	<0.01	0.0009 J	<0.02	3.2
	02/26/2004 06/17/2004	<0.01 <0.005	<0.01 <0.005	0.0031 J <0.003	3 0.32
	09/02/2004	< 0.005	<0.005	<0.003	2.9
	11/17/2004	<0.005	<0.005	<0.005	2.9 2.7
	04/19/2004	<0.003	<0.005	<0.005	2.8
	10/26/2005	0.0023	<0.005	<0.005	2.8
	04/19/2006	0.0023	0.003 0.0024 J	0.0011	2.8
	11/01/2006	< 0.01	0.0024 J 0.0029 J	<0.001	2.6
	04/19/2007	0.0025 J	0.0029 J 0.00074 J	0.001	2.8
	10/17/2007	<0.01	0.00074 J	0.001 0.00051 J	2.7
	04/23/2008	<0.01	< 0.005	0.00054 J	2.9
	04/23/2000	VO.01	VO.003	0.00054 J	2.7
S-3					
1	05/02/2003	< 0.005	< 0.02	< 0.005	1.97
	08/12/2003	< 0.005	< 0.02	< 0.005	2.03
1	08/14/2003	< 0.005	< 0.02	< 0.005	3.26
	11/04/2003	< 0.01	0.0006 J	< 0.02	1.7
	02/26/2004	0.0097 J	0.0011 J	< 0.02	0.64
	06/15/2004	0.01	< 0.005	0.003 B	3.9
	06/17/2004	< 0.005	0.0026 B	0.003 B	3.5
	08/31/2004	< 0.005	< 0.005	< 0.003	3.6
	09/02/2004	< 0.005	< 0.005	< 0.003	1.3
	11/16/2004	< 0.005	< 0.005	< 0.005	2.7
	04/18/2005	< 0.005	< 0.005	< 0.005	1.8
	10/24/2005	< 0.005	< 0.005	< 0.005	0.98
	04/18/2006	< 0.01	0.0015 J	< 0.001	2.5
	10/31/2006	< 0.01	0.00095 J	< 0.001	1.5
	04/17/2007	< 0.01	0.00052 J	< 0.001	1.7
	10/16/2007	< 0.01	< 0.005	< 0.001	2.8
	04/22/2008	< 0.01	< 0.005	0.00041 J	1.6
MW 101C					
MW-101S	05/07/2003	0.017	< 0.02	< 0.005	0.09
	08/15/2003	0.017	<0.02	<0.005	0.09
	11/06/2003	0.013	0.002 0.0036 J	0.005 0.0065 J	0.09
	06/17/2004	0.017	0.0036 J 0.0046 B	<0.003	0.077
	09/02/2004	0.013	<0.005	<0.003	0.073
	11/18/2004	0.012	< 0.005	<0.005	0.073
	04/20/2005	< 0.012	< 0.005	<0.005	0.073
	10/26/2005	0.0028	< 0.005	< 0.005	6.4
	04/20/2006	0.017	0.0067	< 0.003	0.084
	0.1/20/2000	V•V1/	V•VUV1	NO.001	V•VUT

8/29/2008 Page 2 of 10

Barkhamsted - New Hartford Landfill

Well	Sample	Darkhan	ISTEU - NEW HAITIOIU L	anam	
Location	Date	Arsenic	Chromium	Lead	Manganese
	nup (mg/L)	0.005	0.050	0.003	0.050
	(mg/L) 0	0.010	0.10	0.015	NCI
MW-101S					
	11/02/2006	0.0088 J	0.0044 J	< 0.001	0.079
	04/19/2007	0.008 J	0.0026 J	0.00066 J	0.082
	10/18/2007	0.0084 J	0.0029 J	0.00083 J	0.099
	04/24/2008	0.0063 J	0.0022 J	0.0011	0.083
MW-101I	0.5.100.100.00	0.00#	0.00	0.005	0.45
	05/08/2003	<0.005	<0.02	< 0.005	0.15
	06/17/2004	< 0.005	< 0.005	< 0.003	0.034
	04/20/2005	<0.01	<0.005	< 0.005	0.025
	04/21/2006	0.038	0.0012 J	0.0014	0.034
	04/25/2008	< 0.01	0.00094 J	0.0012	0.059
MW-101B					
	05/07/2003	< 0.005	< 0.02	< 0.005	6
	08/28/2003	< 0.005	<0.02	< 0.005	5.95
	11/06/2003	<0.01	0.0042 J	0.0057 J	5.1
	02/27/2004	<0.01	0.002 J	0.0037 J 0.011 J	5.2
	06/17/2004	< 0.005	0.002 J 0.0011 B	<0.003	5.4
	09/02/2004	<0.005	<0.005	<0.003	5.5
	11/18/2004	<0.005	<0.005	<0.005	5.2
	04/20/2005	<0.003	<0.005	<0.005	4.3
	10/26/2005	0.012	<0.005	<0.005	0.09
	04/20/2006	<0.01	0.003 0.0028 J	<0.003	4.8
	11/02/2006	<0.01	0.0028 J	<0.001	5.1
	04/19/2007	0.0032 J	0.003 J 0.0013 J	0.001	6.1
	10/18/2007	<0.01	0.0013 J 0.0012 J	0.001	5.8
	04/24/2008	<0.01	<0.005	0.00011 0.00092 J	5.3
	04/24/2008	\(\) 0.01	\0.003	0.000 <i>)</i> 2 j	3.3
MW-101D					
	05/07/2003				
	05/08/2003	< 0.005	< 0.02	0.009	0.51
MW-102S					
	05/01/2003	< 0.005	< 0.02	< 0.005	< 0.05
	08/12/2003	< 0.005	<0.02	< 0.005	0.04
	11/04/2003	0.014	0.0007 J	< 0.02	0.0076 J
	02/25/2004	< 0.01	0.0008 J	< 0.02	0.023
	06/15/2004	<0.005	<0.005	0.003	0.011
	08/31/2004	<0.005	<0.005	0.005	0.29
	11/16/2004	<0.005	<0.005	<0.005	<0.01
	04/18/2005	<0.005	<0.005	<0.005	<0.01
	10/24/2005	<0.005	<0.005	< 0.005	0.022
	04/18/2006	0.019	0.0015 J	<0.001	0.0036 J
	10/31/2006	<0.01	0.0032 J	<0.001	0.055
	04/17/2007	< 0.01	0.00087 J	< 0.001	0.0053 J

8/29/2008 Page 3 of 10

Barkhamsted - New Hartford Landfill

Well	Sample				
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clear	nup (mg/L) 0	0.005□	0.050□	0.003	0.050□
	(mg/L) 0	0.010	0.1	0.015 0	NC I
MW-102S					
	10/16/2007	< 0.01	0.0012 J	0.00077 J	0.04
	04/22/2008	< 0.01	< 0.005	< 0.001	0.01
MW 100D					
MW-102B	05/01/2002	< 0.005	40.02	40.00 <i>5</i>	0.41
	05/01/2003 08/12/2003	<0.005	<0.02 <0.02	<0.005 <0.005	
		<0.005 <0.01	<0.02 0.0009 J		0.37
	11/04/2003			<0.02	0.17
	02/25/2004	<0.01	0.0005 J	0.0028 J	0.23
	06/15/2004	< 0.005	<0.005	<0.003	0.4
	08/31/2004	<0.005	<0.005	<0.003	0.17
	11/16/2004	<0.005	<0.005	<0.005	0.37
	04/18/2005	<0.005	<0.005	<0.005	0.3
	10/24/2005	< 0.005	<0.005	< 0.005	0.26
	04/18/2006	0.035	0.0025 J	< 0.001	0.049
	10/31/2006	<0.01	0.0034 J	0.0016	0.23
	04/17/2007	0.0023 J	< 0.005	0.0024	0.45
	10/16/2007	< 0.01	< 0.005	0.0012	0.34
	04/22/2008	< 0.01	< 0.005	0.0029	0.58
MW 1020					
MW-103S	05/01/2003	< 0.005	< 0.02	< 0.005	< 0.05
	08/13/2003	< 0.005	<0.02	<0.005	<0.03
	11/05/2003	< 0.01	0.0012 J	<0.02	0.022
	02/26/2004	<0.01	0.0012 J 0.0011 J	<0.02	0.022
	06/16/2004	< 0.005	0.0011 J 0.0038 B	<0.02	0.06
	08/31/2004	< 0.005	<0.005	<0.003	0.023
		<0.005	<0.005	<0.005	0.025
	11/16/2004				
	04/18/2005	< 0.005	< 0.005	< 0.005	0.026
	10/27/2005	< 0.001	<0.005	< 0.005	0.021
	04/19/2006	<0.01	0.0054	0.0019	0.078
	10/31/2006	<0.01	0.01	0.0032	0.2
	04/18/2007	<0.01	0.0012 J	0.00097 J	0.013
	04/19/2007	0.003 J	0.00073 J	0.00099 J	3
	10/17/2007	<0.01	0.0066	0.0028	0.15
	10/18/2007	<0.01	0.00078 J	<0.001	0.0026 J
	04/23/2008	< 0.01	0.0029 J	0.0018	0.06
MW-103B					
	05/01/2003	< 0.005	< 0.02	< 0.005	0.12
	08/13/2003	< 0.005	<0.02	<0.005	0.12
	11/05/2003	< 0.01	0.002 J	<0.02	0.21
	02/26/2004	<0.01	0.002 J 0.0005 J	0.0055 J	0.16
	06/16/2004	<0.01	0.0005 J 0.0013 B	<0.003 <0.003	0.16
	08/31/2004	<0.005	<0.0013 B <0.005	<0.003	0.063
	11/16/2004	<0.005	<0.005	<0.005	0.063
	11/10/2004	\U.UUJ	\U.UUJ	NO.003	U.U4/

8/29/2008 Page 4 of 10

Barkhamsted - New Hartford Landfill

Well	Sample	Darkilanis	tea Hew Hartiora E		
Location	Date	Arsenic	Chromium	Lead	Manganese
	nup (mg/L)	0.005	0.050	0.003	0.050
	Img/L) □	0.010 □	0.1	0.015	NC I
MW-103B					
	04/18/2005	< 0.005	< 0.005	< 0.005	0.052
	10/27/2005	< 0.001	< 0.005	< 0.005	0.055
	04/19/2006	< 0.01	0.0041 J	0.0026	0.051
	10/31/2006	< 0.01	0.0008 J	< 0.001	0.14
	04/18/2007	< 0.01	0.0019 J	0.0014	0.037
	10/17/2007	< 0.01	0.0011 J	0.00058 J	0.09
	04/23/2008	< 0.01	0.0015 J	0.00088 J	0.065
MW-104S					2.21
	05/05/2003	<0.005	<0.02	<0.005	0.31
	11/05/2003	<0.01	0.0011 J	<0.02	0.039
	06/15/2004	<0.005	0.001 B	<0.003	0.024
	11/17/2004	<0.005	<0.005	<0.01	0.01
	04/19/2005	<0.005	<0.005	<0.005	0.024
	10/26/2005	<0.001	< 0.005	<0.005	0.012
	04/19/2006	<0.01	0.0019 J	< 0.002	0.0074 J
	11/01/2006	<0.01	0.0014 J	<0.001	0.039
	04/18/2007	<0.01	0.0017 J	0.0011	0.085
	10/17/2007	<0.01	0.0019 J	0.0013	0.19
	04/23/2008	< 0.01	0.0011 J	< 0.001	0.032
MW-104I					
IVI VV -1041	05/05/2003	< 0.005	< 0.02	< 0.005	0.08
	06/15/2004	< 0.005	0.0012 B	0.003 B	0.094
	00/15/2001	10.002	0.0012 D	0.002 B	0.0074
MW-104B					
	05/05/2003	< 0.005	< 0.02	< 0.005	0.03
	11/05/2003	< 0.01	0.0006 J	< 0.02	0.1
	06/15/2004	< 0.005	0.0014 B	0.002 B	0.027
	11/17/2004	< 0.005	< 0.005	< 0.01	0.079
	04/19/2005	< 0.005	< 0.005	< 0.005	< 0.01
	10/26/2005	< 0.001	< 0.005	< 0.005	< 0.01
	04/19/2006	< 0.01	0.0014 J	< 0.002	0.011
	11/01/2006	< 0.01	0.0034 J	0.0063	0.079
	04/18/2007	< 0.01	0.0036 J	0.0042	0.056
	10/17/2007	< 0.01	0.0013 J	0.0031	0.069
	04/23/2008	< 0.01	0.00075 J	0.001	0.025
MW-105S	004424222	0.007	0.05	0.007	0.01
	08/13/2003	< 0.005	< 0.02	< 0.005	0.04
MW 105D					
MW-105B	08/13/2003	< 0.005	< 0.02	< 0.005	0.02
	00/13/2003	<0.003	\U. U2	<0.003	U.U2
MW-106S					
	05/02/2003	< 0.005	< 0.02	< 0.005	0.39
8/29/2008			Page 5 of 10		

Barkhamsted - New Hartford Landfill

Docation Date	Well	Sample				
RODE Control Contro			Arsenic	Chromium	Lead	Manganese
MW-106S 08/12/2003		nup (mg/L)	0.005	0.050 □		
08/12/2003 0.005 0.02 0.005 0.51 11/04/2003 0.001 0.0015 J 0.002 0.34 02/26/2004 0.001 0.0007 J 0.002 0.29 06/15/2004 0.005 0.0029 B 0.002 B 0.35 09/01/2004 0.005 0.005 0.005 0.003 0.34 11/16/2004 0.005 0.005 0.005 0.005 0.28 04/18/2005 0.005 0.005 0.005 0.005 0.23 10/24/2005 0.005 0.005 0.005 0.005 0.23 10/24/2005 0.005 0.005 0.005 0.005 0.27 04/18/2006 0.0046 J 0.0017 J 0.001 0.17 10/31/2006 0.0046 J 0.0017 J 0.001 0.17 10/31/2006 0.001 0.00069 J 0.001 0.034 04/17/2007 0.01 0.00069 J 0.0001 0.31 04/22/2008 0.001 0.0012 J 0.00091 J 0.31 04/22/2008 0.001 0.0012 J 0.00091 J 0.15 MW-108B 08/13/2003 0.005 0.02 0.005 0.04 MW-109S 08/12/2003 0.005 0.002 0.005 0.04 MW-109S 08/12/2003 0.005 0.002 0.005 0.04 MW-1011 05/05/2003 0.005 0.002 0.005 0.012 4.4 04/19/2006 0.033 0.003 J 0.015 5.1 04/24/2008 0.01 0.003 0.003 0.0012 5 MW-111S 05/07/2003 0.005 0.002 0.005 0.001 06/16/2004 0.005 0.002 0.005 0.002 08/14/2003 0.01 0.0009 J 0.002 0.018 02/27/2004 0.01 0.0005 0.002 0.005 0.002 08/14/2003 0.001 0.0009 J 0.002 0.005 04/19/2004 0.005 0.005 0.005 0.003 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.005 0.005 0.005 0.007/2004 0.005 0.006 0.005 0.005 0.007/2004 0.005 0.006 0.006 04/18/2007 0.01 0.0007 0.00091 0.00075 0.0010 04/24/2008 0.01 0.000		mg/L) I	0.010	0.1	0.015 □	NCI
11/04/2003						
02/26/2004 0.01 0.0007 J 0.002 B 0.02 0.29 06/15/2004 0.005 0.0029 B 0.002 B 0.035 09/01/2004 0.005 0.005 0.003 0.34 11/16/2004 0.005 0.005 0.005 0.005 0.28 04/18/2005 0.0005 0.005 0.005 0.005 0.23 10/24/2005 0.0005 0.005 0.0005 0.0005 0.27 04/18/2006 0.0046 J 0.0017 J 0.001 0.17 10/31/2006 0.001 0.0017 J 0.001 0.2 04/17/2007 0.01 0.00069 J 0.001 0.34 10/16/2007 0.01 0.00069 J 0.0001 0.31 04/22/2008 0.001 0.0012 J 0.00091 J 0.15 MW-108B 08/13/2003 0.005 0.02 0.005 0.004 MW-109S 08/12/2003 0.005 0.002 0.005 0.004 MW-109S 08/12/2003 0.005 0.002 0.005 0.004 MW-1011 05/05/2003 0.005 0.005 0.001 0.34 04/19/2006 0.033 0.005 0.005 0.012 4.4 04/19/2006 0.033 0.005 0.005 0.0012 5 MW-111S 05/07/2003 0.005 0.005 0.0012 5 MW-111S 05/07/2003 0.005 0.002 0.005 0.002 08/14/2003 0.005 0.002 0.005 0.002 08/14/2003 0.005 0.002 0.005 0.002 08/14/2003 0.005 0.002 0.005 0.002 08/14/2003 0.005 0.005 0.001 0.009 J 0.002 08/14/2003 0.005 0.005 0.002 08/14/2003 0.005 0.005 0.005 0.002 08/14/2003 0.005 0.005 0.005 0.002 08/14/2003 0.005 0.005 0.005 0.002 08/14/2003 0.005 0.005 0.005 0.003 09/02/2004 0.005 0.006 0.006 0.003 09/02/2004 0.005 0.006 0.006 0.005 0.005 04/19/2006 0.044 0.005 0.005 0.005 0.005 04/19/2006 0.044 0.005 0.005 0.005 0.005 04/19/2006 0.044 0.005 0.005 0.005 0.001 04/19/2006 0.044 0.005 0.006 0.006 04/18/2007 0.01 0.00071 J 0.00075 J 0.019 04/24/2008 0.01 0.00071 J 0.00062 J 0.0092 J MW-1111 05/07/2003 0.005 0.005 0.005 0.005 04/18/2007 0.01 0.00071 J 0.00062 J 0.0092 J						
06/15/2004 <0.005 0.0029 B 0.002 B 0.35 09/01/2004 <0.005 <0.005 <0.003 0.34 11/16/2004 <0.005 <0.005 <0.005 <0.005 04/18/2005 <0.005 <0.005 <0.005 <0.028 04/18/2005 <0.005 <0.005 <0.005 <0.005 02/17 <0.001 0.0017 <0.001 0.17 10/31/2006 0.0046 J 0.0017 J <0.001 0.17 10/31/2006 0.01 0.0001 J <0.001 0.001 0.2 04/17/2007 <0.01 0.0005 <0.001 0.001 0.001 0.31 10/16/2007 <0.01 0.0005 <0.001 0.001 0.001 0.001 04/22/2008 <0.01 0.0012 J 0.0009 J 0.15 MW-108B 08/13/2003 <0.005 <0.02 <0.005 <0.02 MW-110I 05/05/2003 <0.005 <0.002 <0.005 <0.02 MW-110I 05/05/2003 <0.005 <0.005 0.001 <0.005 <0.02 MW-111S 05/07/2003 <0.005 <0.005 <0.005 0.001 <0.005 <0.005 <0.005 MW-111S 05/07/2003 <0.005 <0.02 <0.005 <0.005 <0.02 MW-111S 05/07/2003 <0.005 <0.02 <0.005 <0.001 <0.005 <0.001 <0.005 <0.005 <0.002 MW-111S 05/07/2003 <0.005 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.						
09/01/2004 <0.005 <0.005 <0.003 0.34 11/16/2004 <0.005 <0.005 <0.005 <0.025 04/18/2005 <0.005 <0.005 <0.005 <0.023 10/24/2005 <0.005 <0.005 <0.005 <0.005 04/18/2006 <0.0046 J 0.0017 J <0.001 0.17 10/31/2006 <0.01 0.0017 J <0.001 0.2 04/17/2007 <0.01 0.00069 J <0.001 0.34 10/16/2007 <0.01 <0.0005 <0.001 0.31 04/27/2008 <0.01 0.0012 J 0.00091 J 0.15 MW-108B						
11/16/2004 <0.005 <0.005 <0.005 <0.025 <0.025 <0.027 <0.001 <0.027 <0.001 <0.027 <0.001 <0.027 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001						
04/18/2005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.007 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		09/01/2004				
10/24/2005		11/16/2004	< 0.005		< 0.005	0.28
04/18/2006 0.0046 J 0.0017 J <0.001 0.17 10/31/2006 <0.01 0.0001 J <0.001 0.2 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.004 <0.001 0.001 0.004 <0.001 0.005 <0.001 0.015 <0.001 0.005 <0.001 0.005 <0.001 0.005 <0.001 0.005 <0.005 <0.005 <0.005 <0.004 <0.005 <0.005 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0		04/18/2005	< 0.005	< 0.005	< 0.005	0.23
10/31/2006 <0.01		10/24/2005	< 0.005	< 0.005	< 0.005	0.27
04/17/2007 0.01 0.00069 J 0.001 0.034 0.01/16/2007 0.01 0.005 0.001 0.31 0.01/16/2008 0.01 0.0012 J 0.00091 J 0.15 0.15 0.007 0.01 0.007 0.008 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.004 0.005 0.005 0.005 0.004 0.005 0.005 0.005 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.005 0.002 0.005		04/18/2006	0.0046 J	0.0017 J	< 0.001	0.17
10/16/2007 <0.01 <0.005 <0.001 0.31 <0.005 <0.00091 J 0.15		10/31/2006	< 0.01	0.001 J	< 0.001	0.2
MW-108B MW-109S MW-1		04/17/2007	< 0.01	0.00069 J	< 0.001	0.034
MW-108B 08/13/2003		10/16/2007	< 0.01	< 0.005	< 0.001	0.31
MW-109S		04/22/2008	< 0.01	0.0012 J	0.00091 J	0.15
MW-109S						
MW-109S 08/12/2003						
MW-1101 MW-1101		08/13/2003	< 0.005	< 0.02	< 0.005	0.04
MW-1101 MW-1101	N 6777 4000					
MW-1101 05/05/2003		00/10/2002	0.005	0.02	0.00%	0.02
05/05/2003		08/12/2003	<0.005	<0.02	<0.005	<0.02
05/05/2003	MW 110I					
04/19/2005		05/05/2003	<0.005	<0.02	<0.005	48
04/19/2006 04/24/2008 0.033 0.003 J 0.015 5.1 MW-111S 05/07/2003 <0.005						
MW-111S MW-111S 05/07/2003 <0.005 <0.02 <0.005 <0.02 <0.005 <0.02 <0.005 <0.02 <0.005 <0.02 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.001 <0.009 J <0.001 <0.001 <0.0009 J <0.001 <0.001 <0.0002 J <0.015 <0.015 <0.001 <0.001 <0.0003 <0.0032 <0.0032 <0.003 <0.0032 <0.002 <0.005 <0.003 <0.0032 <0.002 <0.005 <0.003 <0.0023 <0.0023 <0.0027 <0.0019/2004 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.007 <0.005 <0.005 <0.001 <0.007 <0.005 <0.005 <0.001 <0.007 <0.005 <0.005 <0.001 <0.007 <0.001 <0.007 <0.001 <0.007 <0.001 <0.007 <0.001 <0.007 <0.001 <0.007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0007 <0.001 <0.0002 <0.001 <0.0002 J <0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0000 0.0009 0.0009 0.0000 0.0009 0.0000 0.0009 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000						
MW-111S 05/07/2003						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		04/24/2000	\0.01	\0.003	0.0012	S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-111S					
11/06/2003 <0.01 0.0009 J <0.02 0.018 02/27/2004 <0.01 <0.01 0.002 J 0.015 06/16/2004 <0.005 0.0014 B <0.003 0.032 09/02/2004 <0.005 <0.005 <0.003 0.023 11/17/2004 <0.005 <0.005 <0.003 0.023 11/17/2004 <0.005 <0.005 <0.005 <0.005 <0.005 04/19/2005 <0.005 <0.005 <0.005 <0.005 10/26/2005 <0.001 <0.005 <0.005 <0.005 04/20/2006 0.04 0.0015 J <0.001 0.017 11/01/2006 <0.01 0.00076 J <0.001 0.026 04/18/2007 <0.01 0.00091 J 0.00075 J 0.019 10/18/2007 <0.01 0.00081 J <0.001 0.0032 J 04/24/2008 <0.01 0.00071 J 0.00062 J 0.0092 J MW-111I		05/07/2003	< 0.005	< 0.02	< 0.005	< 0.02
11/06/2003 <0.01 0.0009 J <0.02 0.018 02/27/2004 <0.01 <0.01 0.002 J 0.015 06/16/2004 <0.005 0.0014 B <0.003 0.032 09/02/2004 <0.005 <0.005 <0.003 0.023 11/17/2004 <0.005 <0.005 <0.003 0.023 11/17/2004 <0.005 <0.005 <0.005 <0.005 <0.005 04/19/2005 <0.005 <0.005 <0.005 <0.005 10/26/2005 <0.001 <0.005 <0.005 <0.005 04/20/2006 0.04 0.0015 J <0.001 0.017 11/01/2006 <0.01 0.00076 J <0.001 0.026 04/18/2007 <0.01 0.00091 J 0.00075 J 0.019 10/18/2007 <0.01 0.00081 J <0.001 0.0032 J 04/24/2008 <0.01 0.00071 J 0.00062 J 0.0092 J MW-111I		08/14/2003	< 0.005	< 0.02	< 0.005	< 0.02
02/27/2004 <0.01		11/06/2003			< 0.02	
06/16/2004 <0.005 0.0014 B <0.003 0.032 09/02/2004 <0.005		02/27/2004				
09/02/2004 <0.005						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.023
04/19/2005 <0.005						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
04/18/2007 <0.01						
10/18/2007 <0.01						
04/24/2008 <0.01 0.00071 J 0.00062 J 0.0092 J MW-111I 05/07/2003 <0.005						
MW-111I 05/07/2003 <0.005 <0.02 <0.005 <0.02 08/15/2003 <0.005 <0.02 <0.005 <0.02 06/16/2004 <0.005 <0.005 <0.003 0.0041 B						
05/07/2003 <0.005						• • • • • • • • • • • • • • • • • • • •
08/15/2003 <0.005	MW-111I					
06/16/2004 <0.005 <0.005 <0.003 0.0041 B		05/07/2003	< 0.005		< 0.005	
		08/15/2003	< 0.005	< 0.02	< 0.005	< 0.02
3/29/2008 Page 6 of 10		06/16/2004	< 0.005	< 0.005	< 0.003	0.0041 B
	8/20/2009			Page 6 of 10		

8/29/2008 Page 6 of 10

Barkhamsted - New Hartford Landfill

Well	Sample	Durknums	The The Thantion L		
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clear	nup (mg/L)	0.005	0.050	0.003	0.050
	(mg/L) 0	0.010	0.1	0.015	NCI
MW-111I					
	04/19/2005	< 0.005	< 0.005	< 0.005	< 0.01
	04/20/2006	0.017	0.0014 J	< 0.001	0.0055 J
	04/24/2008	< 0.01	0.00076 J	0.00095 J	0.018
MW-111B					
	05/07/2003	< 0.005	< 0.02	< 0.005	0.03
	08/14/2003	< 0.005	< 0.02	< 0.005	0.04
	11/06/2003	< 0.01	0.0006 J	< 0.02	0.03
	02/27/2004	< 0.01	0.0006 J	< 0.02	0.045
	06/16/2004	< 0.005	0.003 B	0.004	0.048
	09/02/2004	< 0.005	< 0.005	< 0.003	0.065
	11/17/2004	< 0.005	< 0.005	< 0.005	0.077
	04/19/2005	< 0.005	< 0.005	< 0.005	0.044
	10/26/2005	0.0013	< 0.005	< 0.005	0.025
	04/20/2006	< 0.01	0.0014 J	< 0.001	0.023
	11/01/2006	< 0.01	0.003 J	0.0013	0.02
	04/18/2007	< 0.01	0.00079 J	< 0.001	0.015
	10/18/2007	< 0.01	0.0011 J	0.0007 J	0.014
	04/24/2008	< 0.01	< 0.005	0.00087 J	0.019
NOW 1100					
MW-112S	05/06/2003	< 0.005	< 0.02	< 0.005	0.06
	08/13/2003	<0.005	<0.02	< 0.005	0.02
	11/05/2003	<0.003	<0.02	<0.02	0.02 0.01 J
	02/27/2004	<0.01	0.0077 J	<0.02	0.01 3
	06/16/2004	< 0.005	0.0077 3	<0.02	0.032
	09/01/2004	< 0.005	0.0032	0.004	0.039
	11/16/2004	<0.005	< 0.005	< 0.01	0.019
	04/18/2005	< 0.005	< 0.005	< 0.005	<0.01
	10/26/2005	< 0.003	< 0.005	< 0.005	<0.01
	04/18/2006	0.004 J	0.0025 J	<0.002	0.0075 J
	11/01/2006	<0.01	0.019	0.0019	0.19
	04/18/2007	<0.01	0.0023 J	< 0.001	0.0096 J
	10/17/2007	<0.01	0.002 J	0.00038 J	0.0097 J
	04/23/2008	<0.01	0.0032 J	0.00085 J	0.018
			· ·	, and the second	
MW-112B	05/05/2002	< 0.005	< 0.02	-0.005	<0.02
	05/05/2003 08/13/2003	<0.005	<0.02	<0.005 <0.005	<0.02
	11/05/2003	<0.003	0.0045 J	<0.003	0.002 0.0037 J
	02/27/2004	<0.01	0.0045 J 0.0066 J	<0.02	0.0037 J 0.022
	06/16/2004	< 0.005	0.0049 B	<0.02	0.022 0.0062 B
	09/01/2004	<0.005	<0.005	<0.003	<0.01
	11/17/2004	<0.005	<0.005	<0.003	<0.01
	04/18/2004	<0.005	0.0062	<0.005	<0.01
	07/10/2003	\0.003	U.UUU2	<0.00J	\0.01

8/29/2008 Page 7 of 10

Barkhamsted - New Hartford Landfill

Well	Sample				
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clean	up (mg/L)	0.005	0.050□	0.003	0.050
MCLs ¶ı	mg/L) □	0.010	0.1	0.015 □	NCI
MW-112B					
	10/26/2005	< 0.001	< 0.005	< 0.005	< 0.01
(04/18/2006	0.0051 J	0.0042 J	< 0.002	0.0035 J
	11/01/2006	< 0.01	0.005 J	< 0.001	0.0051 J
	04/18/2007	< 0.01	0.0041 J	0.00074 J	0.006 J
	10/17/2007	< 0.01	0.0041 J	< 0.001	0.0049 J
(04/23/2008	< 0.01	0.004 J	< 0.001	0.0033 J
) WY 1100					
MW-113S	05/06/2002	0.007	0.02	0.005	0.02
	05/06/2003	< 0.005	<0.02	0.005	0.02
	08/14/2003	< 0.005	<0.02	<0.005	<0.02
	11/05/2003	<0.01	0.0016 J	<0.02	0.0024 J
	02/27/2004	<0.01	0.001 J	<0.02	0.0048 J
	06/18/2004	< 0.005	0.0011 B	<0.003	0.0014 B
	09/02/2004	< 0.005	<0.005	<0.003	<0.01
	11/17/2004	<0.005	<0.005	<0.01	<0.01
	04/19/2005	< 0.005	< 0.005	< 0.005	<0.01
	10/27/2005	< 0.001	< 0.005	< 0.005	<0.01
	04/20/2006	<0.01	0.0015 J	< 0.001	0.0039 J
	11/02/2006	<0.01	0.0012 J	<0.001	0.0013 J
	04/18/2007	<0.01	0.00089 J	0.00089 J	0.0011 J
	10/18/2007	<0.01	0.00093 J	0.00053 J	0.0016 J
(04/24/2008	< 0.01	0.00093 J	0.00066 J	0.0032 J
MW-113B					
	05/05/2003	< 0.005	< 0.02	< 0.005	0.04
	08/28/2003	< 0.005	<0.02	< 0.005	0.03
	11/05/2003	< 0.01	0.0016 J	<0.02	0.019
	02/27/2004	<0.01	0.001 J	0.0024 J	0.0085 J
	06/18/2004	< 0.005	< 0.005	< 0.003	0.011
	09/02/2004	< 0.005	< 0.005	< 0.003	< 0.01
	11/17/2004	< 0.005	< 0.005	<0.01	<0.01
	04/19/2005	< 0.005	< 0.005	< 0.005	<0.01
	10/27/2005	< 0.001	< 0.005	< 0.005	0.02
	04/20/2006	0.0056 J	0.0046 J	0.0026	0.024
	11/02/2006	< 0.01	0.0033 J	< 0.001	0.0058 J
	04/18/2007	<0.01	0.0014 J	0.0013	0.0062 J
	04/24/2008	<0.01	0.0011 J	0.0016	0.0095 J
	0 1/2 1/2000	40.01	0.0010 9	0.0010	0.000
MW-115S					
(05/02/2003	< 0.005	< 0.02	< 0.005	< 0.05
(08/12/2003	< 0.005	< 0.02	< 0.005	< 0.02
	11/04/2003	0.0059 J	0.0009 J	< 0.02	0.0044 J
(02/25/2004	< 0.01	0.0006 J	< 0.02	0.007 J
(06/15/2004	< 0.005	0.0021 B	0.003	0.029
,	08/31/2004	< 0.005	< 0.005	< 0.003	< 0.01

8/29/2008 Page 8 of 10

Barkhamsted - New Hartford Landfill

Well	Sample	Darkilanis	ted New Hartiora		
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clear	nup (mg/L)	0.005□	0.050□	0.003	0.050
MCLs I	(mg/L) 0	0.010	0.1	0.015 □	NCI
MW-115S					
	11/16/2004	< 0.005	< 0.005	< 0.005	0.016
	04/18/2005	< 0.005	< 0.005	< 0.005	0.013
	10/24/2005	< 0.005	< 0.005	< 0.005	0.027
	04/18/2006	0.024	0.0021 J	< 0.001	0.022
	10/31/2006	< 0.01	0.0027 J	< 0.001	0.012
	04/17/2007	< 0.01	0.0015 J	0.0012	0.021
	10/16/2007	< 0.01	0.0018 J	0.00099 J	0.039
	04/22/2008	< 0.01	0.0012 J	0.00095 J	0.014
MW-115B					
	05/01/2003	< 0.005	< 0.02	< 0.005	0.07
	08/12/2003	< 0.005	< 0.02	< 0.005	0.13
	11/04/2003	0.01	0.0018 J	< 0.02	0.066
	02/25/2004	0.012	0.0021 J	0.0026 J	0.075
	06/15/2004	< 0.005	0.0011 B	0.005	0.048
	08/31/2004	< 0.005	< 0.005	< 0.003	0.035
	11/16/2004	< 0.005	< 0.005	< 0.005	0.13
	04/18/2005	< 0.005	< 0.005	< 0.005	0.13
	10/24/2005	< 0.005	< 0.005	< 0.005	0.12
	04/18/2006	0.011	0.0011 J	< 0.002	0.085
	10/31/2006	< 0.01	0.003 J	< 0.001	0.026
	04/17/2007	< 0.01	0.0011 J	0.0011	0.021
	10/16/2007	< 0.01	0.0011 J	0.00099 J	0.011
	04/22/2008	< 0.01	0.0011 J	0.0012	0.01
MW-117S					
	08/13/2003	< 0.005	< 0.02	< 0.005	0.74
NOW 117D					
MW-117B	09/12/2002	-0.005	40.00	40 00 5	-0.02
	08/13/2003	< 0.005	< 0.02	< 0.005	< 0.02
MW-118S					
	08/13/2003	< 0.005	< 0.02	< 0.005	< 0.02
	00,10,2000	101000	10.02	101000	10102
MW-120S					
	08/14/2003	< 0.005	< 0.02	< 0.005	3.15
	11/06/2003	< 0.01	0.0011 J	0.0032 J	3.3
	02/26/2004	< 0.01	0.0006 J	0.002 J	2.2
	06/17/2004	< 0.005	0.0018 B	0.003 B	2.9
	09/02/2004	< 0.005	< 0.005	< 0.003	1.5
	11/17/2004	< 0.005	< 0.005	< 0.005	2.6
	04/19/2005	< 0.01	< 0.005	< 0.005	2.9
	10/27/2005	< 0.001	< 0.005	< 0.005	1.6
	04/19/2006	0.0056 J	0.0028 J	< 0.001	2.4
	11/01/2006	<0.01	0.0028 J	< 0.001	1.6
	04/19/2007	< 0.01	0.00083 J	< 0.001	2.4
0/20/2000			-		

8/29/2008 Page 9 of 10

Barkhamsted - New Hartford Landfill

Well	Sample				
Location	Date	Arsenic	Chromium	Lead	Manganese
ROD I Clean	nup (mg/L) 0	0.005□	0.050□	0.003	0.050□
MCLs 	mg/L) I	0.010	0.1	0.015□	NCI
MW-120S					
	10/17/2007	< 0.01	0.00073 J	0.00051 J	0.81
	04/23/2008	< 0.01	< 0.005	0.00077 J	2.4
MW-120B					
	08/14/2003	< 0.005	< 0.02	< 0.005	< 0.02
	11/05/2003	0.0062 J	0.0016 J	< 0.02	0.061
	06/17/2004	< 0.005	< 0.005	0.002 B	0.39
	09/02/2004	< 0.005	< 0.005	< 0.003	0.46
	11/17/2004	< 0.005	< 0.005	< 0.01	0.47
	04/19/2005	< 0.01	< 0.005	< 0.005	0.47
	10/27/2005	0.0019	< 0.005	< 0.005	0.4
	04/19/2006	0.011	0.003 J	< 0.001	0.41
	11/01/2006	< 0.01	0.0021 J	< 0.001	0.33
	04/19/2007	< 0.01	0.00055 J	0.00046 J	0.34
	10/17/2007	< 0.01	< 0.005	< 0.001	0.32
	04/23/2008	< 0.01	0.0012 J	0.00099 J	0.33

Notes:

< = Non detected values presented as two times the MDL if a paramater has an MDL value and is not an inorganic compound, otherwise value is presented as the reporting limit (RL).</p>

Bolded value = A detected result

J = Reported result below RL, estimated value

MDL = Method detection limit

M = MS/MSD anomaly

S = Sample receiving anomaly

mg/L= Milligrams per liter

-- = Not Analyzed □

NC = No Criteria Limit Available□

Well@Depths:

 $\overline{B} = Shallow bedrock$

D = Deep bedrock

I = Intermediate bedrock

R = Shallow bedrock

S = Overburden well

8/29/2008 Page 10 of 10

Table 6 Summary of Historical Seeps and Surface Water Metals Results Only chemicals of concern are reported

Barkhamsted - New Hartford Landfill

	Ť	_	Darki	iamsteu	- New n	<u>lartford L</u>	anum				
Well Location	Sample Date	Arsenic	Aluminum	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Zinc
Benchmark C	riteria (mg/L)										
Surface	Water	NC	0.087	0.0039	NC	NC	0.0027	1.0	0.0004	0.12	0.0365
See	ps	0.15	0.087	0.0039	0.0008	0.0238	0.029	1.0	0.0147	0.12	0.382
	11/07/2003 11/18/2004 04/20/2005 10/24/2005 04/18/2006 11/01/2006	<0.01 <0.005 <0.005 <0.005 <0.01	0.029 J <0.1 0.065 <0.05 0.2 3.5		<0.005 <0.001 <0.001 <0.001 <0.001 0.00024 J		<0.02 <0.01 <0.01 <0.01 0.0038 J	41 M 1.1 0.84 0.31 50 12	0.0063 J <0.005 <0.005 <0.005 <0.001 0.014	2.6 0.18 0.14 0.061 2.3 0.73	0.0044 J <0.04 <0.04 <0.04 0.0023 J 0.056
	04/25/2008	0.015	5.5	0.71	0.0067	0.021	0.03	420	0.013	2.5	0.048 J
	08/14/2003 11/07/2003 06/17/2004 04/20/2005 10/24/2005 04/20/2007 04/25/2008	<0.005 0.0095 J <0.005 <0.005 <0.02 <0.2 <0.01	0.11 0.9 0.11 0.13 13 98 2.6	0.31 0.19 0.14 0.013 1.1 3.5 0.29	<0.001 0.0005 J <0.001 <0.001 0.0052 0.031 0.0016	<0.02 0.0028 J 0.0022 B <0.005 0.036 0.24 0.0063	<0.02 0.0038 J <0.01 <0.01 0.08 0.54 0.026	138 77 M 24 1.4 560 1900 85	<0.005 0.015 J <0.003 <0.005 0.041 0.18 0.0078	6.73 5.5 8.8 0.2 16 44 17	<0.05 0.3 0.007 B <0.04 <0.2 1.1 0.034 J
SW-3	08/15/2003	< 0.005		< 0.05	< 0.001	<0.02	<0.02	0.16	< 0.005	0.03	<0.05
	11/07/2003	0.012	0.11	0.0072 J		0.0006 J	< 0.02	0.075 M	< 0.02	0.017	0.0094 J
	06/17/2004	< 0.005	0.058		0.0005 B	< 0.005	< 0.01	0.1	0.003	0.14	0.005 B
	09/01/2004	< 0.005	0.74	0.015	< 0.001	< 0.005	0.017	1.6	0.003	1.2	< 0.04
	11/18/2004	< 0.005	< 0.1	< 0.01	< 0.001	< 0.005	< 0.01	0.1	< 0.005	0.045	< 0.04
	04/20/2005	< 0.01	0.39	< 0.01	< 0.001	< 0.005	< 0.01	0.38	< 0.005	0.084	< 0.04
	10/24/2005	< 0.005	0.1	< 0.01	< 0.001	< 0.005	< 0.01	0.05	< 0.005	< 0.01	< 0.04
	04/18/2006	< 0.01	0.068 J	0.0081 J	< 0.001	0.00084 J	0.0034 J	0.035 J	< 0.001	0.0079 J	0.0068 J
	11/01/2006	< 0.01	0.086 J	0.0064 J	< 0.001	0.00065 J	0.0031 J	0.033 J	< 0.001	0.0044 J	< 0.05
	04/20/2007	< 0.01	0.11	0.005 J		0.00075 J			< 0.001	0.0026 J	
	04/25/2008	< 0.01	0.11	0.0062 J	< 0.001	< 0.005	0.0005 J	0.11	0.00063 J	0.0093 J	0.0048 J
	08/14/2003 11/07/2003 02/25/2004 06/17/2004 09/01/2004 11/18/2004	<0.005 <0.01 <0.01 <0.005 <0.005 <0.005	0.52 0.089 J 0.12 <0.05 <0.05 <0.1	<0.05 0.0098 J 0.013 J 0.036 0.047 0.013	<0.001 <0.005 <0.005 <0.001 <0.001	<0.02 <0.01 0.0039 J <0.005 <0.005 <0.005	<0.02 0.0011 J 0.011 J 0.001 B <0.01 <0.01	5.3 0.61 M 1.2 4 4.8 1.3	<0.005 <0.02 <0.02 0.003 <0.003 <0.005	0.42 0.099 0.23 0.75 0.87 0.21	<0.05 0.01 J 0.048 0.006 B <0.04 <0.04
	04/20/2005	< 0.01	0.059	< 0.01	< 0.001	< 0.005	< 0.01	0.83	< 0.005	0.15	< 0.04

8/29/2008 Page 1 of 2

Table 6 Summary of Historical Seeps and Surface Water Metals Results Only chemicals of concern are reported

Barkhamsted - New Hartford Landfill

	1					artiola		1			1
Well Location	Sample Date	Arsenic	Aluminum	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Zinc
Benchmark C	riteria (mg/L)										
Surface	Water	NC	0.087	0.0039	NC	NC	0.0027	1.0	0.0004	0.12	0.0365
See	eps	0.15	0.087	0.0039	0.0008	0.0238	0.029	1.0	0.0147	0.12	0.382
SW-9			-					-	-		
	10/24/2005	< 0.005	0.075	< 0.01	< 0.001	< 0.005	< 0.01	0.38	< 0.005	0.077	< 0.04
	04/18/2006	0.021	0.033 J	0.013	< 0.001	0.00074 J	0.014	1	< 0.001	0.23	0.0048 J
	11/01/2006	< 0.01	0.041 J	0.012	< 0.001	0.0022 J	0.013	0.67	< 0.001	0.12	0.0072 J
	04/20/2007	< 0.01	0.13	0.0085 J	0.00013 J	0.0011 J	0.013	0.36	< 0.001	0.05	0.012 J
	04/25/2008	< 0.01	0.023 J	0.013	< 0.001	< 0.005	0.00058 J	0.67	< 0.001	0.12	0.0046 J
SW-16											
	08/14/2003	< 0.005	< 0.1	< 0.05	< 0.001	< 0.02	< 0.02	0.68	< 0.005	0.2	< 0.05
	11/07/2003	< 0.01	0.085 J	0.008 J	< 0.005	0.0007 J	0.0015 J	0.28 M	< 0.02	0.058	0.01 J
	02/25/2004	< 0.01	0.092 J	0.012 J	< 0.005	0.0007 J	0.001 J	0.54	0.0028 J	0.15	0.014 J
	06/17/2004	< 0.005	< 0.05	0.013	0.0012	< 0.005	0.001 B	0.97	0.008	0.33	0.004 B
	09/01/2004	< 0.005	0.063	0.013	< 0.001	< 0.005	< 0.01	1.6	< 0.003	0.42	< 0.04
	11/18/2004	< 0.005	< 0.1	< 0.01	< 0.001	< 0.005	< 0.01	0.92	< 0.005	0.2	< 0.04
	04/20/2005	< 0.01	0.33	< 0.01	< 0.001	< 0.005	< 0.01	1.4	< 0.005	0.15	< 0.04
	10/24/2005	< 0.005	0.091	< 0.01	< 0.001	< 0.005	< 0.01	0.22	< 0.005	0.042	< 0.04
	04/18/2006	0.011	0.04 J	0.0072 J	< 0.001	0.001 J	0.0014 J	0.63	< 0.001	0.16	0.0057 J
	11/01/2006	< 0.01	0.075 J	0.0076 J	< 0.001	0.0008 J	0.0023 J	0.48	< 0.001	0.11	< 0.05
	04/20/2007	< 0.01	0.13	0.0085 J	0.00013 J	0.0011 J	0.013	0.36	< 0.001	0.05	0.012 J
	04/25/2008	< 0.01	0.042 J	0.0064 J	< 0.001	< 0.005	0.00063 J	0.39	< 0.001	0.12	< 0.05

Notes:

Bolded value = A detected result

J = Reported result below RL, estimated value

MDL = Method detection limit

M = MS/MSD anomaly

S = Sample receiving anomaly

mg/L= Milligrams per liter

-- = Not Analyzed□

NC = No Criteria Limit Available□

S3 and S6 = Seeps

SW-3, SW-9, SW-16 = Surface Water Samples

8/29/2008 Page 2 of 2

< = Non detected values presented as two times the MDL if a paramater has an MDL value and is not an inorganic compound, otherwise value is presented as the reporting limit (RL).</p>

Table 7 Summary of Historical Sediment Metals Results Barkhamsted - New Hartford Landfill

Concentrations in milligrams per kilogram (mg/kg)

Location	Sample Barium Chromium Date		Barium Chromium Copper Iron			Lead		Manganese		Nickle		Zinc					
Sediment Ben	chmark	TEC	PEC TEC PEC TEC PEC TEC		TEC	PEC	TEC	PEC	TEC	PEC	TEC	PEC	TEC	PEC			
Concentration	ns (mg/kg)	40	40	43.4	111	111 31.6 149		20000	40000	35.8	128	460	1100	22.8 48.6		121	459
Sed-3		•						•		•	•						
(upstream)	6/17/2004	1	60	3	9	18	3	33	000	5	5	34	00	2	5	1	40
	4/20/2005	1	30	3	3	< 1	14	32	000	6	2	40	00	2	2	1	30
	4/18/2006 180		80	5	7	17	7	37	000	5	6	41	00	3	1	1.	50
	4/20/2007	1	30	3	5	17	7	27	000	3	1	41	00	2	.3	8	38
4/25/2008 120		20	3	1	17		32	000	50		3400		22		110		
Sed-16																	
(mid-stream)	6/17/2004	5	53	10		7.	6	16	000	6	.4	73	30	7	.9	34	
Sed-16 (mid-stream) 6/17 4/20 4/25 Dup 4/20 4/25 Sed-9	4/20/2005	3	37	6.9		6.6		10	000	(5	60	00	5.6		2	25
	4/18/2006	4	13	34	40	51		11000		9		20	00	85		33	
	4/20/2007	3	32	1	6.9 340 10 15		9	15000		1.9		190		5.5		19	
Dup	4/20/2007	4	18	1	5	9.	4	93	800	1	1	69	90	7	.2	3	35
	4/25/2008	3	38	8	.4	14	4	10	000	1	.6	32	20	6	.5	2	24
Sad 0																	
(downstream	6/17/2004	3	34	2	25	17	7	19	000	2	2	30	00	g	.1	3	31
(Swiistisani	m 6/17/2004 34 4/20/2005 37			.0	12			000		.4	400		9.1 6.7			29	
	4/18/2006		28		1	5.			000		.8	360		5.5			26
	4/20/2007		12	1	.8	7.		13	000	6		400		6.9			31
	4/25/2008		28		8.1		3	10000		2.9		260		4.5			23

Notes:

Bold value indicates concentration above benchmark concentration as presented in the ROD.

Table 8 Summary of Chemicals of Concern Analtyical Results - 2003 to 2008 VOCs and SVOCs in Groundwater

Barkhamsted - New Hartford Landfill

VOC of Concern	1.2-	Dichloropro	nane	4-Me	thyl-2-penta	anone	ſ	Acetone			Chloroforn	1	С	nlorometha	ne	ſ	2-Butanor	ne	1.2-	Dichloroet	hane	1.4-D	ichlorobe	nzene		Benzene	
ROD Cleanup (ug/L)	1,2 .	0.5	pune	7 1110	5	2110110		10			0.5	•		1			10		.,_	0.5	ilano	1,4 5	10	1120110		0.5	
MCL (ug/L)		5			NC			700	_		NC			2.7			NC			1			75			5	
Well ID	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect
MW-1S	0.64	0.64	7	0.88	0.88	7	11	11	7	ND	ND		ND	ND		ND	ND		0.53	0.67	13	3.8	6.1	61	7.9	13.7	93
MW-4S	0.61	0.61	10	ND	ND		5.87	5.87	10	ND	ND		ND	ND		ND	ND		0.68	0.68	10	0.79	1.43	50	2.5	6.39	70
MW-4R	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-5S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.51	0.56	19	0.38	1.3	47	1.01	3.5	69
MW-5B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.2	0.2	6	0.61	1.3	79
MW-101S	1.34	1.34	8	57.3	57.3	8	33.3	33.3	8	ND	ND		ND	ND		26.1	26.1	8	ND	ND		2.8	16	60	5	14	69
MW-101B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		3.7	27.8	8	ND	ND		0.41	15	29	0.37	13	56
MW-101I	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-101D	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-102S	ND	ND		ND	ND		31	31	7	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-102B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.25	0.8	33	0.36	0.87	56	0.59	1.19	60
MW-103S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		3.7	3.7	4	ND	ND		0.53	0.53	4	0.37	2.1	16
MW-103B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.22	0.25	13
MW-104S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-104B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-101I	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-105S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-105B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-106S	ND	ND		ND	ND		ND	ND		0.47	0.47	7	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-108B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-109S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-110I	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.35	0.35	17	0.53	0.78	80
MW-111S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.79	0.79	4	0.76	2.2	7	0.24	3	15
MW-111B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.29	0.7	36
MW-111I	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.53	1.02	67
MW-112S	ND	ND		ND	ND		ND	ND		ND	ND		0.38	0.38	7	ND	ND		ND	ND		ND	ND		ND	ND	
MW-112B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.79	0.79	4	0.76	2.2	7	0.24	3	16
MW-113S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-113B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-115S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.24	0.24	4	0.37	0.53	7	0.59	0.59	4
MW-115B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-117S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-117B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-118S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-120S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.26	0.26	7	0.29	0.33	15
MW-120B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		3.41	18	33	ND	ND		ND	ND		0.37	0.78	67
S-3	0.54	0.54	6	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		0.5	0.91	17.647059	0.52	2.3	55	0.55	3.1	76
Number of Wells with Detections		4			2			4			1			1			4			8			14			18	
Percent of Wells with Detections		11			5			11			3			3			11			22			38			49	
Maximum Observed Concentration		1.34			57.3			33.3			0.47			0.38			27.8			0.91			16			14	
Date of Maximum Concentration Detected		11/6/2003			11/6/2003			11/6/2003	}		11/4/2003			10/17/2007	•		6/17/2004	4		6/15/2004			10/18/200	7		11/6/2003	

Notes:
All concentrations reported in ug/L
ROD Cleanup - background concentration from
Record of Decision (ROD)
ND - Non Detect
Min - Minimum

Max - Maximum
% Detect - Percent Detected in well
MCL - USEPA Maximum Contaminant Level for

drinking water
NC - No Concentration Set

Table 8 Summary of Chemicals of Concern Analtyical Results - 2003 to 2008 VOCs and SVOCs in Groundwater

Barkhamsted - New Hartford Landfill

VOC of Concern		Chloroethai	ne	Met	hylene Chlo	oride		Toluene		Tr	richloroeth	ene	١ ١	/inyl chlori	de	Bis(2-e	thylhexyl)p	hthalate	2.4-	Dimethylpl	nenol	3 &	4 Methylph	nenol
ROD Cleanup (ug/L)	i i	1			2			0.5		<u> </u>	0.5	-	Ì	1		5,_ 6	2			10			10	
MCL (ug/L)		NC			5			1000			5			2			6			NC			NC	
Well ID	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detec
MW-1S	2.8	9.17	53	0.21	3.2	13	5.1	12	87	ND	ND		ND	ND		3.6	12.4	20	140	895	93	ND	ND	
MW-4S	0.88	7.45	50	0.2	0.26	20	1.41	4.38	40	ND	ND		ND	ND		4	4	10	6.4	6.4	10	ND	ND	
MW-4R	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		3.4	3.4	100	ND	ND	
MW-5S	1.3	4.5	56	ND	ND		0.5	15.4	38	ND	ND		ND	ND		ND	ND		3.7	21.1	44	ND	ND	
MW-5B	0.65	0.87	14	ND	ND		ND	ND		0.53	0.82	57	0.23	0.41	14	ND	ND		ND	ND		ND	ND	
MW-101S	3.34	3.34	8	1.16	1.16	8	31	12000	100	ND	ND		ND	ND		5.4	13.1	15	19	1300	85	63.1	130	23
MW-101B	1.37	3.1	12	0.29	0.29	4	0.49	55	20	1.72	3.29	8	ND	ND		14.4	14.4	4	2.6	1000	25	ND	ND	
MW-101I	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		9.2	9.2	20	ND	ND		ND	ND	
MW-101D	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-102S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		11.4	11.4	7	ND	ND		ND	ND	
MW-102B	1	2.5	60	0.4	0.44	27	1	1	7	1	1	7	2	2	7	ND	ND		ND	ND		ND	ND	
MW-103S	1.37	3.1	12	0.29	0.29	4	1.1	1.1	4	1.72	3.29	8	ND	ND		9.7	14.4	8	ND	ND		ND	ND	
MW-103B	ND	ND		0.6	0.62	13	ND	ND		ND	ND		ND	ND		3.7	16.3	20	ND	ND		ND	ND	
MW-104S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-104B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		3.8	13	36	ND	ND		ND	ND	
MW-101I	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		9.2	9.2	20	ND	ND		ND	ND	
MW-105S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-105B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		4.1	4.1	100	ND	ND		ND	ND	
MW-106S	ND	ND		ND	ND		0.82	0.82	7	ND	ND		ND	ND		7.1	7.1	7	ND	ND		ND	ND	
MW-108B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		8.6	8.6	100	ND	ND		ND	ND	
MW-109S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-110I	0.76	1.17	40	ND	ND		ND	ND		ND	ND		ND	ND		7.3	7.3	20	ND	ND		ND	ND	
MW-111S	0.83	4	12	0.58	0.58	4	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-111B	0.88	3.1	57	ND	ND		ND	ND		0.39	1.6	71	ND	ND		ND	ND		ND	ND		ND	ND	
MW-111I	1.4	4.29	100	0.29	0.29	33	ND	ND		0.62	0.88	67	ND	ND		17.2	17.2	17	ND	ND		ND	ND	
MW-112S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		6.8	6.8	7	ND	ND		ND	ND	
MW-112B	0.83	4	12	0.58	0.58	4	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-113S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-113B	ND	ND		ND	ND		0.78	5.6	15	ND	ND		ND	ND		3.3	17	46	ND	ND		36	36	8
MW-115S	1.6	1.6	4	ND	ND		ND	ND		ND	ND		ND	ND		7.6	7.6	4	ND	ND		ND	ND	
MW-115B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		6.6	11	14	ND	ND		180	180	7
MW-117S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		21.4	21.4	100	ND	ND		ND	ND	
MW-117B	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		118	118	100	ND	ND		ND	ND	
MW-118S	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-120S	0.78	0.84	15	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	ND	
MW-120B	0.89	2.1	67	0.28	0.39	17	ND	ND		0.67	3.35	100	ND	ND		5.8	5.8	8	ND	ND		ND	ND	
S-3	1.2	4.1	53	ND	ND		0.24	0.6	18	ND	ND		ND	ND		ND	ND		11	11	6	ND	ND	
Number of Wells with Detections		17			11			10	•		7			2	•		22			7	•		3	
Percent of Wells with Detections		46			30			27			19			5			59			19			8	
Maximum Observed Concentration		9.17			3.2			12000			3.35			2			118			1300			180	
Date of Maximum Concentration Detected		8/12/2003			10/31/2006	}		5/7/2003			8/14/2003			8/14/2003			8/13/2003			4/20/2005			11/6/2003	

Notes:
All concentrations reported in ug/L
ROD Cleanup - background concentration from
Record of Decision (ROD)
ND - Non Detect
Min - Minimum

Max - Maximum

% Detect - Percent Detected in well

MCL - USEPA Maximum Contaminant Level for

drinking water
NC - No Concentration Set

Table 9 Summary of Chemicals of Concern Analytical Results - 2003 to 2008 Metals in Groundwater

Barkhamsted - New Hartford Landfill

VOC of Concern		Lead			Arsenic			Chromium	1		Manganes	е	
ROD Cleanup (ug/L)		3			5			50		50			
MCL (ug/L)		15			10			100			NC		
Well ID	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	Min	Max	%Detect	
MW-1S	0.97	41	40	7.7	24	93	1.6	12	60	48	80	100	
MW-4S	1.4	7.8	40	7.6	26	100	0.7	2.9	60	770	6550	100	
MW-4R	2.1	2.1	100	7	7	100	1.1	1.1	100	4600	4600	100	
MW-5S	0.46	6	25	38	38	6	0.53	1.7	25	560	1900	100	
MW-5B	0.51	3.1	36	2.3	21	21	0.74	2.9	36	320	3540	100	
MW-101S	0.66	6.5	31	2.8	17	92	2.2	6.7	54	73	6400	100	
MW-101B	0.92	11	25	3	12	21	0.73	4.2	46	2.6	6100	88	
MW-101I	1.2	1.4	40	38	38	20	0.94	1.2	40	25	150	100	
MW-101D	9	9	100	ND	ND		ND	ND		510	510	100	
MW-102S	0.77	5	21	14	19	14	0.7	3.2	43	3.6	290	79	
MW-102B	1.2	2.9	36	2.3	35	14	0.5	3.4	29	49	580	100	
MW-103S	0.97	3.2	25	3	12	13	0.73	10	50	2.6	5300	79	
MW-103B	0.58	5.5	33	ND	ND		0.5	4.1	60	27	230	100	
MW-104S	1.1	1.3	18	ND	ND		1	1.9	64	7.4	310	100	
MW-104B	1	6.3	50	ND	ND		0.6	3.6	64	11	100	82	
MW-101I	1.2	1.4	40	38	38	20	0.94	1.2	40	25	150	100	
MW-105S	ND	ND		ND	ND		ND	ND		40	40	100	
MW-105B	ND	ND		ND	ND		ND	ND		20	20	100	
MW-106S	0.91	2	14	4.6	4.6	7	0.69	2.9	50	34	510	100	
MW-108B	ND	ND		ND	ND		ND	ND		40	40	100	
MW-109S	ND	ND		ND	ND		ND	ND	T 1	ND	ND		
MW-110I	1.2	15	80	33	33	20	3	3.7	40	4200	5100	100	
MW-111S	0.62	2.5	24	5	40	12	0.71	5.1	48	3.2	3700	84	
MW-111B	0.7	4	29	1.3	1.3	7	0.6	3	50	14	77	100	
MW-111I	0.95	0.95	17	17	17	17	0.76	1.4	33	4.1	18	50	
MW-112S	0.38	4	29	4	4	7	2	19	57	7.5	190	86	
MW-112B	0.74	2.5	17	5	10	13	0.79	6.6	54	3.3	3700	71	
MW-113S	0.53	5	29	ND	ND		0.89	1.6	57	1.1	20	64	
MW-113B	1.3	2.6	31	5.6	5.6	8	1	4.6	46	5.8	40	77	
MW-115S	0.91	3	23	5.9	24	8	0.6	3.8	50	4.4	400	77	
MW-115B	0.99	5	36	10	12	21	1.1	3	57	10	130	100	
MW-117S	ND	ND		ND	ND		ND	ND		740	740	100	
MW-117B	ND	ND		ND	ND		ND	ND	T	ND	ND		
MW-118S	ND	ND		ND	ND		ND	ND		ND	ND		
MW-120S	0.51	3.2	38	5.6	5.6	8	0.6	2.8	54	810	3300	100	
MW-120B	0.46	2	25	1.9	11	25	0.55	3	42	61	470	92	
S-3	0.41	3	18	9.7	10	12	0.52	2.6	35	640	3900	100	
0 0	0		'	0.,			0.02		, ,,	0.0	0000	1 .00	
Number of Wells with Detections		30			25			29			34		
Percent of Wells with Detections		81			68			78			92		
Maximum Observed Concentration		41			40			19			6550		
Date of Maximum Concentration			l										
Detected		11/4/2003			4/20/2006			11/1/2006			8/12/2003		

Notes:

All concentrations reported in ug/L
ROD Cleanup - background concentration from Record of Decision (ROD)
ND - Non Detect

Min - Minimum Max - Maximum

Moetect - Percent Detected in well
 MCL - USEPA Maximum Contaminant Level for drinking water
 NC - No Concentration Set

Table 10 Changes in Cancer Toxicity Data

Weight of	f Source	Date of Change	
Evidence/Ca er Guidelin Description	anc ne	(MM/DD/YY)	
A	IRIS		
D	IRIS	08/05/08	
A	IRIS	08/05/08	
B2	IRIS		
B2	NCEA	10/14/04	
B2	NCEA	10/14/04	
B2	IRIS	08/05/08	
D	IRIS	08/05/08	
С	IRIS		
B2	IRIS		
B1	NCEA	10/14/04	
A	IRIS	08/05/08	
B2	IRIS		
USEPA GROUP: A - Human Carcinogen B2 - Probable human carcinogen – Indicates sufficient evidence in animals and inadequate or no evidence in			
B2 - Pro	bable l	bable human carcinogen -	

Summary of Toxicity Assessment

NCEA: National Center for Environmental Assessment

This table provides carcinogenic risk information that is relevant to the contaminants of concern in groundwater. At the time of writing the risk assessment, slope factors were not available for the dermal route of exposure. Thus, the dermal slope factors used in the assessment were extrapolated from oral values. An adjustment factor is sometimes applied, and is dependent upon how well the chemical is absorbed via the oral route. Adjustments are particularly important for chemicals with less than 50% absorption via the ingestion route. However, adjustment is not necessary for the chemicals evaluated at this Site. Therefore, the same values presented above were used as the dermal carcinogenic slope factors for these contaminants.

C - Possible human carcinogen

Table 11 Changes in Non-Cancer Toxicity Data

Pathway: Ingestion, Dermal										
Chemical of Concern	Oral RfD Value in ROD	Current Applicable Oral RfD Value	Oral RfD Units	Primary Target Organ	Combined Uncertainty/ Modifying Factors	Source	Date of Change (MM/DD/YY)			
Arsenic	0.0003	same	mg-kg/day	Skin	3	IRIS				
Chromium	0.003 (Cr VI)	same	mg-kg/day		900	IRIS				
Manganese	0.024	0.046	mg-kg/day	CNS	1	IRIS	08/05/08			
Acetone	0.1	0.9	mg-kg/day	Liver/Kidney	1000	IRIS	08/05/08			
Benzene	0.003	0.0004	mg-kg/day		300	IRIS	08/05/08			
2-Butanone	0.6	same	mg-kg/day	Developmental	1000	IRIS				
1,2-Dichloroethane	0.03	none	mg-kg/day			IRIS	08/05/08			
1,2-Dichloropropane	0.0011	none	mg-kg/day			IRIS	08/05/08			
Chloroethane	0.4	none	mg-kg/day			NCEA	10/14/04			
Chloroform	0.01	same	mg-kg/day	Liver	1000	IRIS				
Dibromochloromethane	0.02	same	mg-kg/day	Kidney	1000	IRIS				
4-Methyl-2-pentanone	0.08	same	mg-kg/day	Liver/Kidney	3000	NCEA	10/14/04			
Methylene chloride	0.06	same	mg-kg/day	Liver	100	IRIS				
Toluene	0.2	0.08	mg-kg/day	Liver/Kidney	3000	IRIS	08/05/08			
Trichloroethene	0.006	0.0003	mg-kg/day	Liver/Kidney	3000	NCEA	10/14/04			
bis(2-Ethylhexyl)- phthalate	0.02	same	mg-kg/day	Liver	1000	IRIS				
1,4-Dichlorobenzene	0.03	same	mg-kg/day			IRIS	08/05/08			
2,4-Dimethylphenol	0.02	same	mg-kg/day	Blood	3000	IRIS				
4-Methylphenol	0.005	same	mg-kg/day	CNS	1000	NCEA	10/14/04			
Vinyl chloride	none	0.003	mg-kg/day	Liver	30	IRIS	08/05/08			

Key:
Toxicity data as reviewed on 8/5/08
Changes since Record of Decision shown in boldface , effective dates noted
where known.
: Not applicable or no information available
IRIS: Integrated Risk Information System, U.S. EPA
NCEA: National Center for Environmental Assessment

Summary of Toxicity Assessment

This table provides non-carcinogenic risk information that is relevant to the contaminants of concern in groundwater. All of the COCs have toxicity data, indicating their potential for adverse non-carcinogenic health effects in humans. All RfD's are based on chronic toxicity. Dermal RfD values used in the risk assessment were extrapolated from oral values.

Sample Location	Frequency	MNA Monitoring Type	Analytical Parameters	Initial Rationale	Revised Rationale for 2008
			Groundwater Monitoring	Wells	
S-3	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located in the vicinity of the eastern edge of the overburden ground water plume.	No change.
MW-1S*	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located in the vicinity of the upgradient portion of the overburden plume.	No change.
MW-4S	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located in central portion of overburden plume.	No change.
MW-4R	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located at western edge of shallow bedrock plume.	Obstructed at 12 feet since start, but pulled out tubing April 2008.
MW-5S*	Semi-	Performance	MNA Parameters,	Wells are located at	No change.
MW-5B*	Annual		VOCs, SVOCs, Metals - Total, Landfill leachate indicators	western edge of overburden and shallow bedrock plumes.	

Sample Location	Frequency	MNA Monitoring Type	Analytical Parameters	Initial Rationale	Revised Rationale for 2008						
	1		Groundwater Monitoring Wells								
MW-101S*	Semi-	Performance	MNA Parameters,	Wells are located	No change.						
MW-101B*	Annual		VOCs, SVOCs, Metals - Total, Landfill leachate indicators	at the western edge of overburden and shallow bedrock plumes.							
MW-101I	Annual to	Detection	VOCs, SVOCs,	Ground water in intermediate and	Remove wells. MW- 101D is not						
MW-101D	not sampled		Metals - Total, Landfill leachate indicators	deep bedrock zones not impacted; monitor for vertical migration.	in plume (below it) and MW-101I is just below plume and vertical impact was not noted. MW101B can be indicator for vertical migration.						
MW-102S*	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Ground water in overburden not impacted at this location. Well to monitor potential plume migration in eastern direction.	No change.						
MW-102B*	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located at eastern edge of shallow bedrock plume.	No change.						
MW-103S*	Semi- Annual to annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located at eastern edge of overburden plume.	Change to annual as ND since 2003.						
MW-103B*	Semi- Annual to annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located near the center of the shallow bedrock plume.	Change to annual as ND since 2003.						

Sample Location	Frequency	MNA Monitoring Type	Analytical Parameters	Initial Rationale	Revised Rationale for 2008	
	•	•	Groundwater Monitoring	Wells		
MW-104S	Semi- Annual to Annual	Detection	VOCs, SVOCs, Metals - Total,	Wells are approx. 225 ft northwest of overburden and	Changed frequency to annual. No affects	
MW-104B	1 211110001		Landfill leachate indicators	shallow bedrock plumes. Wells to	to wells.	
MW-104I	Annual to not sampled	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	monitor plume migration in northern direction.	Remove from sampling as the S and B wells are adequate. Well also obstructed since 2004.	
MW-106S*	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located upgradient, southwest of overburden plume. Well to monitor plume migration in western direction.	No change.	
MW-110I	Annual to not sampled	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Well is located at the northeastern edge of the landfill cap.	Remove from sampling as historically ND and nearby coverage with S-3 and MW102.	
MW-111S*	Semi- Annual	Detection	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Wells are located at downgradient edge of overburden and shallow bedrock	Change by removing the MNA parameters from MW-111S	
MW-111B*			MNA Parameters, VOCs, SVOCs, Metals - Total, Landfill leachate indicators	plumes. Wells to monitor plume migration in northeastern direction.	and adding them to MW-111I as plume is diving deeper and no significant shallow affects.	
MW-111I	Annual to Semi- Annual	Detection	MNA Parameters, VOCs, SVOCs, Metals - Total, Landfill leachate indicators		Add MNA sampling as noted above and increase frequency from annual to semiannual.	

Sample Location	Frequency	MNA Monitoring Type	Analytical Parameters	Initial Rationale	Revised Rationale for 2008
		Groun	dwater Monitoring Wells		
MW-112S	Semi- Annual to Annual	Ambient	VOCs, SVOCs, Metals - Total,	Wells are located upgradient, south of plume, and represent	Change MW- 112S to annual. Remove?
MW-112B	Semi- Annual to not sampled		Landfill leachate indicators	background data.	Remove MW- 112B from sampling.
MW-113S*	Semi- Annually	Ambient	MNA Parameters, VOCs, SVOCs,	Wells are located upgradient, south of plume, and represent	No change.
MW-113B*			Metals - Total, Landfill leachate indicators	background data.	
MW-113I	Annual to not sampled	Ambient	VOCs, SVOCs, Metals - Total, Landfill leachate indicators,		Obstructed at 1.5 ft since start, remove from sampling.
MW-113D					Obstructed by pump left by others since start, remove from sampling.
MW-115S* MW-115B*	Semi- Annual	Ambient	VOCs, SVOCs, Metals - Total, Landfill leachate indicators	Wells are located southeast of plume, and represent background data.	No change. Wells also sentinel for residences along New Hartford Road.
MW-120S	Semi- Annual to Annual	Detection or Performance	MNA Parameters, VOCs, SVOCs,	Location To Be Determined, likely between MW-5 and	Change to annual as cleaning up.
MW-120B (new wells)	Semi- Annual		Metals – Total, Landfill leachate indicators	MW-117.	No change.

Sample Location	Monitoring		Analytical Parameters	Rationale		
			Surface Water (no change)			
SW-3*	Semi- Annual	N/A	VOCs SVOCs Metals – Total Hardness	Surface water samples will be obtained at locations where groundwater is discharging to surface water. Sample locations		
SW-9*	_		Pesticides Landfill leachate indicators	will correspond to locations sampled previously, using the existing designations for those locations		
			Sediment (no change)			
SED-3	Annual	N/A	VOCs Metals - Total,	Sediment samples will be collected in areas underlying		
SED-16			SVOCs PCBs Pesticides	surface water sampling points.		
SED-9						
		Potab	le Water (Residences – no ch	ange)		
DW-1*	Semi- Annual	N/A	VOCs, Acetone,	Potable water wells are located at residential/commercial		
DW-2*			MEK SVOCs, Metals - Total,	properties		
DW-3*			Landfill leachate indicators			
			Seeps (no change)			
S6*	Semi- Annual	N/A	VOCs, SVOCs,	Seep sample locations will correspond to locations sampled		
S3*	7 mildai		Metals - Total,	previously, using the existing		
S1*			Total sulfate Pesticides	designations for those locations		

Notes:

- 1. * denotes sample locations specified by the OMM Plan (CTDEP) for the landfill.
- 2. N/A = not applicable.
- 3. Groundwater samples will be collected from different depths based on the well identification as follows: S = overburden well, B or R = shallow bedrock, I = intermediate bedrock, D = deep bedrock.
- 4. Landfill leachate indicators (per Landfill OMM and amendments) include: alkalinity, ammonia, chemical oxygen demand (COD), chloride, nitrate, total dissolved solids (TDS), total suspended solids (TSS), specific conductivity, hardness, pH and total sulfate.

TABLE 12
RECOMMENDED CHANGES TO SAMPLING LOCATIONS, RATIONALE AND FREQUENCY

Sample Location	Frequency	MNA Monitoring Type	Analytical Parameters	Rationale
			Surface Water (no change)	
SW-3*	Semi- Annual	N/A	VOCs SVOCs Metals – Total Hardness Pesticides	Surface water samples will be obtained at locations where groundwater is discharging to surface water. Sample locations will correspond to locations
SW-9*			Landfill leachate indicators	sampled previously, using the existing designations for those locations
			Sediment (no change)	
SED-3	Annual	N/A	VOCs Metals - Total,	Sediment samples will be collected in areas underlying
SED-16			SVOCs PCBs Pesticides	surface water sampling points.
SED-9				
		Potab	le Water (Residences – no ch	ange)
DW-1*	Semi- Annual	N/A	VOCs, Acetone,	Potable water wells are located at residential/commercial
DW-2*			MEK SVOCs, Metals - Total,	properties
DW-3*			Landfill leachate indicators	
			Seeps (no change)	
S6*	Semi-	N/A	VOCs, SVOCs,	Seep sample locations will correspond to locations sampled
S3*			Metals - Total,	previously, using the existing
S1*			Total sulfate Pesticides	designations for those locations

Notes:

- 1. * denotes sample locations specified by the OMM Plan (CTDEP) for the landfill.
- 2. N/A = not applicable.
- 3. Groundwater samples will be collected from different depths based on the well identification as follows: S = overburden well, B or R = shallow bedrock, I = intermediate bedrock, D = deep bedrock.
- 4. Landfill leachate indicators (per Landfill OMM and amendments) include: alkalinity, ammonia, chemical oxygen demand (COD), chloride, nitrate, total dissolved solids (TDS), total suspended solids (TSS), specific conductivity, hardness, pH and total sulfate.